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Motivation and Statement of
Problem

Multi-Function Antenna Array
Miniaturized Waveguide Elements

Motivation

* In the past: one antenna — one specific function
* Nowadays: desire to pack more functions into
one single antenna — more the better
* Demands in mobile-phone industry
— Triple-band
— GPRS
— Bluetooth
— WLAN
» Requisites in aviation industry: aerodynamics

The challenge (in military)

Modern warfare = Electronic warfare (EW): comms,
intelligence, precision

RF functions
— radar, detection, tracking, surveillance, jamming,
counter

Presently: various functions performed by individual
dedicated radars
Problem with separate systems: higher radar signature
(degrade stealth capability)

Goal: Single RF front-end shared by all functions — to
realize a Multi-Function Antenna (MFA) System

Multi-Function Antenna

Comms: guided weapons,
intelligence, kill assessment etc ~ Target tracking &
identification

Detection &
urveillance

Jamming,
countermeasures, etc

MFA Aperture

Potential Advantages

» Reduce platform radar signature (or RCS):
enhance survivability

» Lower cost (less space, save on RCS
reduction of many antennas)

* Reduced weight: vital for platforms with
limited space & power (e.g. Unmanned aerial
vehicles: UAV)

» Affords increase in number of functions




Potential Candidate: Phased Array
* Used in radar since WWII

* High scanning rate: operate
simultaneously against several threats

» Versions: shipboard, land-based, airborne

 Aperture: shared-aperture or sub-aperture

* Option of study: Shared (aperture reuse)
— Interlaced array } 2 approaches: (a) large

broadband (b) compact
— Open-waveguide as elements) narrowband elements

Example: Linearly polarized multi-band array of
open-ended waveguide apertures (fractal geometry)

——— Full scan means
e e e mmssss | clement spacing < 0.5
_— e at all frequencies
f<f<fy

Highly miniaturized
in E-plane: very
e e —— small height (not

I e e [ reason for filling)

________________ Slightly

miniaturized in H-
plane: width < 0.54
(need some filling)

Interlaced dual-polarized dual-band array using open-
ended waveguide elements i
Miniaturization in both planes Above TELO cutoff A0 grating lobes (Rl scan)
Combined requirement on width w: 0.74,<w<4,,/2 A, = %

‘min &,

“*may be small
enough only for f;;

NEED fr Element
SMALL Ji % for f;,
GUIDES

Element
%, 7 o
diéectric-ﬁlled: reduce 1,/
/1/1(,/ 2 &.fzv‘um// = flo above cutoff

Desire for: Compact Miniaturized
Waveguides
To either leave space for other

frequencies (fractal) or for low-
frequency elements

Disadvantages of Full Dielectric Filling

» Attenuation /
* High noise temperature —
* Not flexible in choice of dimensions

* Heavy, higher cost?

* Cannot locate components within

mm) alternative small-guide that is still
predominantly empty?

Soft and Hard Surfaces

Compact Quasi-TEM
Hard Waveguides




Soft & Hard Surfaces (Kildal *88)

Terminology from acoustics

.7 for both guides (upper and lower PEC walls)
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Hard waveguide

What is “Hard” Waveguide?

 Fields at all walls see them as “hard”
(presented ‘hard’ boundary condition):
Maximum on them

* Supports quasi-TEM waves: uniform
aperture field distribution (plane wave)

* TEM waveguides (Itoh et al 1999)

Examples of ideal “hard” rectangular
waveguides supporting TEM
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Examples of realized
linearly-polarized hard quasi-TEM rect. waveguides

Dielectric-Loaded Hard-Walled Rectangular Waveguide
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Propagation in full &
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Relative Freq = 0.90
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Field variation with frequency deviation from TEM
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Narrowband TEM nature
Relative Freq = 1.05 Relative Freq = 1.10
k_ya =j0.8656 k.a=j1.3656

TEM freq serves as cutoff for surface waves

Novel Miniaturized Hard Quasi-TEM
Waveguide: The Compact N-Guide
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Size comparison with conventional empty
guide operating at same frequency

Very
small
indeed

Transverse Field over Cross-Section of N-Guide

Relative . . .
permittivity &= 12 in dielectric walls
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HFSS Vector Field Plots

Electric field vector

Magnetic field vector
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Summary of Modal Study

Much lower loss than fully-filled (for same
dielectric & cross-section): TEM vs TE,,

Flexible cross-section

— Preserve TEM behavior (uniform plane wave in freespace) for
all cross-sections

— Can make as small as desired

Bandwidth Study
— Narrowband TEM
— TEM freq = cutoff for surface waves

Ultra-Compact Quasi-TEM N-Guide (deformed)
— Still predominantly empty
— Defies conventional > 0.74 width restriction
— Opens new doors for research on miniaturized waveguides

Infinite Planar Array

Open-Ended Aperture Radiation




Infinite Planar Array of Miniaturized Dielectric-
Loaded Rectangular Waveguide Apertures
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Objective: Array performance of
Miniaturized Hard Waveguides

* Recap (what we have thus far)

— Multifunction Antenna: Small waveguides (allow
space for other frequencies, low-freq elements)

— Like full dielectric-filling: TEM hard waveguides can
be made small (potential candidate)

— Advantages: Lower dielectric loss, lighter, etc

* Purpose: Study array performance of
miniaturized hard waveguides
— Can they radiate well?

Can make small is

one thing, but how
it performs in array
is another

— Anything special with TEM? —s Presumably yes: to
concretely find out

Parametric Studies

Effects of various attributes on array
transmission

Reflection from aperture:
Variation with width & height

Transmission increases with aperture size: works against us

Geometry Broadside
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Broadside: sinftheta) = 0 for EPS & HPS

H 2

0.0625 2, ! 2osl 4
-~ i B

i % as 6

3 H @

0542, h variant | E o 10
; 5

-1

——————— 7  +17 .E_, o ‘f

w (variant) : Fom i

g

T O
Fixed cell-size | %0

| At TEM hard !

| condition always |

Elongated along height: Miniaturization in E-plane
may still be possible (suits 1st diagram just now)

Various scan angles in E-plane

Still possible miniaturization .
in E-plane (up to some scan) At TEM hard condition
EPS

‘siniheta) = 0.3206 for sinfihets) =

2 =

FII TR
Meight in Wavelengths
¥

s
BT R g

st = 3 A e P o, L = 8 s P

Various scan angles in H-plane

Still possible miniaturization o
in E-plane (up to some scan) At TEM hard condition

o TN = 00 T




Findings

» Smaller the aperture relative to cell-size,
poorer the array transmission

—Against our interest
—Impedance-matching to alleviate this

* Miniaturization may still be possible in £-
plane (suits fractal example earlier on)

Reflection from aperture: Variation with
dielectric depth and permittivity (Full-Scan)
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Findings

Best transmission when operated around TEM
condition

Due to miniaturized aperture (w < A/2): need
loading — but just enough to attain TEM (not to
underload or overload) : optimal loading

As before: due to aperture smallness, poor
transmission — impedance-matching can help

Multi-Frequency Interlaced Array

 Small higher-frequency
apertures present gridded PEC
plane to lower-frequency
elements

elements covered with PEC in
our analysis (neglect them) —
study low freq array by itself

* Thus higher-frequency

* But coupling of higher-freq
into larger lower-freq elements
not negligible — for future work

o High frequency
[~ ] Mid frequency

= mmmm [ ow frequency




Matching Layer

Homogeneous Intermediate Section

Infinite Array of Miniaturized Partially-Loaded Rectangular
Waveguide ApertureS' Broad%ide Matched at TEM Frequency
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Broadside-Matching at TEM Freq: Full & Partial
Filling — Mlmaturlzatlon Factor 2 X 2
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Bandwidth under Broadside Matched at TEM
Frequency for Various Degrees of Miniaturization —10dB bandwidths for various miniaturization
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Physical Realization

Probe-Feeding of Miniaturized
Dielectric-Loaded Quasi-TEM Hard
Rectangular Waveguides

Feeding of Mini Guide: 2GHz TEM freq

2 GHz waveguide reflection (S11) with load comparison

Terminated at
matched load

15 16 17 18 18 2 21 22 23
Frequency (GHz)

N-Guide (cross-sectionally deformed version)
_:_:QIJ'QFiI::I_‘I)“

N\

I

L-Feed: For miniaturized guides

Common coax- L-Feed
waveguide transition Fed from end-wall:
(probe-feed) compactness
L-Feed L-Feed in N-Guide ...

v
L-feed simulated in a 10 GHz Teflon &
dielectric loaded waveguide.

= Reflection

CRESECIEY
Frequency (GH2)

Front and side views
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Parametric
simulation to
determine
correct offset
from the center
of waveguide.
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Conclusions

Difficult array transmission for highly-miniaturized
(both planes) waveguide apertures
— Can be improved with impedance-matching

— BUT easier to miniaturize in £-plane within limited scan
range (suits fractal example just now)

Best performance within vicinity of TEM
— Not to underload or overload
Possible to excite miniaturized guide

Miniaturized waveguide as a possible system
component (especially in MFA systems)

Conclusions

Matching layers overcome poor transmission from
strong miniaturization
— Narrowband though
« Stronger mini-factor, more narrowband: More severe in H-plane|
* Nevertheless: good frequency isolation (simul ops of diff freqs)

— Matching (under broadside at f7;,,) preserved over some
scan-range

For certain miniaturization factor, bandwidth about

the same regardless

— partially or fully loaded

— hard or non-hard

—10dB bandwidth of = 1% possible for factors

between 2x2 & 1x8: space for other freq elements




