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Motivation and Statement of 
Problem

Multi-Function Antenna Array
Miniaturized Waveguide Elements

Motivation
• In the past: one antenna – one specific function
• Nowadays: desire to pack more functions into 

one single antenna – more the better
• Demands in mobile-phone industry

– Triple-band
– GPRS
– Bluetooth
– WLAN

• Requisites in aviation industry: aerodynamics

The challenge (in military)
• Modern warfare = Electronic warfare (EW): comms, 

intelligence, precision
• RF functions

– radar, detection, tracking, surveillance, jamming, 
counter

• Presently: various functions performed by individual 
dedicated radars

• Problem with separate systems: higher radar signature 
(degrade stealth capability)

• Goal: Single RF front-end shared by all functions – to 
realize a Multi-Function Antenna (MFA) System

Multi-Function Antenna

Target tracking & 
identification

Detection & 
surveillance

Comms: guided weapons, 
intelligence, kill assessment etc

Jamming, 
countermeasures, etc

MFA Aperture

Potential Advantages
• Reduce platform radar signature (or RCS): 

enhance survivability
• Lower cost (less space, save on RCS 

reduction of many antennas)
• Reduced weight: vital for platforms with 

limited space & power (e.g. Unmanned aerial 
vehicles: UAV)

• Affords increase in number of functions
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Potential Candidate: Phased Array
• Used in radar since WWII
• High scanning rate: operate 

simultaneously against several threats
• Versions: shipboard, land-based, airborne
• Aperture: shared-aperture or sub-aperture
• Option of study: Shared (aperture reuse)

– Interlaced array
– Open-waveguide as elements

2 approaches: (a) large 
broadband (b) compact 
narrowband elements

Example: Linearly polarized multi-band array of 
open-ended waveguide apertures (fractal geometry)

Full scan means 
element spacing < 0.5λ

at all frequencies 
f1< f2<f3

Slightly 
miniaturized in H-
plane: width < 0.5λ
(need some filling)

Highly miniaturized 
in E-plane: very 
small height (not 
reason for filling)

Interlaced dual-polarized dual-band array using open-
ended waveguide elements

2fhiλ

2floλ

Element 
for flo

Element 
for fhi

dielectric-filled: reduce λε
flo

& fcutoff flo above cutoff
w

Combined requirement on width w: 0.7λε ≤ w ≤ λmin/2
λfhi

may be small 
enough only for fhi

Above TE10 cutoff Avoid grating lobes (full scan)

rε
λ

λε
0=

flow

fhi

flow

flow

NEED 
SMALL 
GUIDES

Miniaturization in both planes

Desire for: Compact Miniaturized 
Waveguides

To either leave space for other 
frequencies (fractal) or for low-

frequency elements

Disadvantages of Full Dielectric Filling

• Attenuation
• High noise temperature
• Not flexible in choice of dimensions
• Heavy, higher cost?
• Cannot locate components within

w=p

εr

alternative small-guide that is still 
predominantly empty?

Soft and Hard Surfaces

Compact Quasi-TEM
Hard Waveguides
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Soft & Hard Surfaces (Kildal ’88)

Et (Ht) zero: soft
Ht (Et) max: hard

Terminology from acoustics
PEC (hard)

PEC (hard)

PEC 
(soft)

PEC 
(soft)

PEC (hard)

PMC 
(hard)

PMC 
(hard)

PEC (hard)
PEC (PMC)

En (Hn) max: hard
Hn (En) zero: soft E-field

E-field

for both guides (upper and lower PEC walls)

Hard waveguide

Conventional metal guide

Soft: zero Hard: max

What is “Hard” Waveguide?

• Fields at all walls see them as “hard” 
(presented ‘hard’ boundary condition): 
Maximum on them

• Supports quasi-TEM waves: uniform 
aperture field distribution (plane wave)

• TEM waveguides (Itoh et al 1999)

Examples of ideal “hard” rectangular 
waveguides supporting TEM

Linearly 
polarized

PEC/PMC
strip surfaces 
on all 4 walls

Dual 
polarized

PMCPMC

PEC

PEC PEC: Perfect 
Electric 
Conductor

PMC: 
Perfect 
Magnetic 
Conductor

Examples of realized
linearly-polarized hard quasi-TEM rect. waveguides

εr

Dielectric-Loaded Hard-Walled Rectangular Waveguide

( )0 0

1
4 1TEM r

d
f µ ε ε

=
−

Tsandoulas and Fitzgerald 1972

Kildal 1988

PBG structure

Itoh et al 1999

PBG waveguide

A way to realize 
EBG-type TEM WGA good & simple 

reference case to

E

Hard only at 
one TEM freq: 

quasi-TEM

A
M

C

A
M

CPE
C

PEC

PECεr

PEC

Uniform Aperture Field at Hard TEM 
Condition (at TEM freq)

HFSS

Analytic G1DMULT

E-field
Electric Conductor

Magnetic Conductor

Hard

Hard

H
ar

d

H
ar

d

So
ft

So
ft

( )
1

0 04 1TEM rd f µ ε ε
−

⎡ ⎤= −⎣ ⎦

Dielectric 
loading εr

Conventional vs Ideal “Hard” 
Rectangular Waveguide

w > λ/2

Metal Waveguide

PEC on all 4 walls

freespace

Limitation

PEC

PEC

PMC PMC

w > 0
No limitation

Ideal Hard Waveguide

E-field lines
E

h > 0

Can be made 
how small 

we like
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Propagation in full & partially-filled guides

43.2 mm

30mmεr = 2.29
HFSS

d d

HFSS 30mm

43.2 mm

30mmεr = 2.29
HFSS

30mm
d d

HFSS 30mm

30mm
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HFSS phase constant for various airwidths 
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Vary central air width of partial guide

d d

HFSS 30
mm

d d

HFSS 30mm

2λd d

HFSS 30mm

λ

vs. vs.

For all 3 
geometries

Accordion 
feature

freespace phase constant at 10GHz 
fTEM => TEM plane wave

Analytical & HFSS Dispersion curves for 
partially-loaded guide
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HFS S  m ode1 HF S S  m ode2

Theory mode1

Theory m ode2

Theory TE M  phase  constant

εr = 2.29

6.6mm 6.6mm 6.6mm

1mmεr = 1εr = 2.29

freespace phase constant at 10GHz fTEM
=> TEM plane wave

Flexible Dimensions

λ 2λ

0.5λ

Flattened

Field variation with frequency deviation from TEM
Relative Freq = 0.90

kz3a = 0.9314 
Relative Freq = 0.95

kz3a = 0.7079  
Relative Freq = 0.97

kz3a = 0.5719   

Relative Freq = 1.00
kz3a = 0.2014 +j0.1976    

Relative Freq = 1.05
kz3a = j0.8656    

Relative Freq = 1.10
kz3a =j1.3656    

TEM freq serves as cutoff for surface waves

Narrowband TEM nature

Novel Miniaturized Hard Quasi-TEM 
Waveguide: The Compact N-Guide

metal
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Size comparison with conventional empty 
guide operating at same frequency

Very 
small
indeed

Transverse Field over Cross-Section of N-Guide

0.10834λ

0.08745λ

εr = 12 in dielectric walls
Relative 
permittivity 
= 12

TEM freq = 
2.3GHz

Dielectric 
dimension 
11.3mm x 
3mm

Freespace
dimension: 
11.3mm x 
7mm

Metal fin 
thickness = 
0.5mm

HFSS Vector Field Plots

Electric field vector Magnetic field vector

HFSS Dispersion for N-Guide:
Dielectric relative permittivity 12
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1st mode N-guide

2nd mode N-guide

TEM phase
constant

TE10 phase const
of empty rect. guide
in Fig. 4

fTEM

εr

εr

11.3mm

3mm

ε07mm

εr = 12

Summary of Modal Study
• Much lower loss than fully-filled (for same 

dielectric & cross-section): TEM vs TE10

• Flexible cross-section
– Preserve TEM behavior (uniform plane wave in freespace) for 

all cross-sections
– Can make as small as desired

• Bandwidth Study
– Narrowband TEM
– TEM freq = cutoff for surface waves

• Ultra-Compact Quasi-TEM N-Guide (deformed)
– Still predominantly empty
– Defies conventional > 0.7λ width restriction
– Opens new doors for research on miniaturized waveguides

Infinite Planar Array

Open-Ended Aperture Radiation
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Infinite Planar Array of Miniaturized Dielectric-
Loaded Rectangular Waveguide Apertures

radiating 
elemental 
aperture

unit cell Radiating 
aperture 

considerably 
smaller than unit-

cell

metal 
flanges 
between 
apertures

Objective: Array performance of 
Miniaturized Hard Waveguides

• Recap (what we have thus far)
– Multifunction Antenna: Small waveguides (allow 

space for other frequencies, low-freq elements)
– Like full dielectric-filling: TEM hard waveguides can 

be made small (potential candidate)
– Advantages: Lower dielectric loss, lighter, etc

• Purpose: Study array performance of 
miniaturized hard waveguides
– Can they radiate well?
– Anything special with TEM? Presumably yes: to 

concretely find out

Can make small is 
one thing, but how 
it performs in array 
is another

Parametric Studies

Effects of various attributes on array 
transmission

h variant

0.5λ0

0.5λ0

w (variant)
εr = 17

0.0625λ0

Reflection from aperture:
Variation with width & height

Geometry Broadside

Elongated along height: Miniaturization in E-plane
may still be possible (suits 1st diagram just now)

Transmission increases with aperture size: works against us

Fixed cell-size
At TEM hard 

condition always

Various scan angles in E-plane
Still possible miniaturization 
in E-plane (up to some scan) At TEM hard condition

Various scan angles in H-plane
Still possible miniaturization 
in E-plane (up to some scan) At TEM hard condition
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Findings

• Smaller the aperture relative to cell-size, 
poorer the array transmission
–Against our interest
– Impedance-matching to alleviate this

• Miniaturization may still be possible in E-
plane (suits fractal example earlier on)

Reflection from aperture: Variation with 
dielectric depth and permittivity (Full-Scan)

0.49λ0

0.49λ0

vary d & εr

0.26λ0

0.26λ0

d

Geometry: 
Mini aperture Broadside

Cutoff 
contour

Hard 
contour

Fixed aperture & cell size
Vary depth & εr

Various scan angles in E-plane Various scan angles in H-plane

Findings

• Best transmission when operated around TEM 
condition

• Due to miniaturized aperture (w < λ/2): need 
loading – but just enough to attain TEM (not to 
underload or overload) : optimal loading

• As before: due to aperture smallness, poor 
transmission – impedance-matching can help

Multi-Frequency Interlaced Array

High frequency

Mid frequency

Low frequency

• Small higher-frequency 
apertures present gridded PEC 
plane to lower-frequency 
elements

• Thus higher-frequency 
elements covered with PEC in 
our analysis (neglect them) –
study low freq array by itself

• But coupling of higher-freq 
into larger lower-freq elements 
not negligible – for future work
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Matching Layer

Homogeneous Intermediate Section

Infinite Array of Miniaturized Partially-Loaded Rectangular 
Waveguide Apertures: Broadside-Matched at TEM Frequency

radiating 
elemental 
aperture

unit cell Radiating 
aperture 

considerably 
smaller than unit-

cell

metal 
flanges 
between 
apertures

Matching Layer

Available space for 
other freq elements

Gridded 
PEC 

ground 
plane
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εr = 17.02

εr = 17

0.03147 λTEM

εr = 1

0.26 λTEM

0.49 λTEM

0.26 λTEM

0.49 λTEM

0.39939 λTEM

εr = 17
εr = 1
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0.0625 λTEM
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17
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0.49 λmatch

0.26 λm
atch

0.49 λm
atch

0.39841 λmatch

εr
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εr = 24.8

εr = 6.16

0.0588 λmatch

εr = 6.16

0.26 λmatch
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0.26 λm
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0.5232 λmatch
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( )
10

10

0

1.13
TEM

TE TEM
z f f

TE
TEM cutoff

k

f f

β = =

=

0 0 02TEM TEM
z TEMf kβ π µ ε= =

( )

10

10
0

1.29

1.57
TEM

TE
TEM cutoff

TE TEM
z f f

f f

kβ =

=

=

Hard 
TEM

Non-Hard 
TE10Hard TE10

Broadside-Matching at TEM Freq: Full & Partial 
Filling – Miniaturization Factor 2 × 2

Lower εr, 
thicker depth 
=> collapsed 
center width

Hard

Non-Hard

Approx 1% BW
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E-Plane Scan
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H-Plane Scan

Broadside-match (at TEM freq) fairly well-maintained over some scan 
angle range: dip-frequency shifts left very slightly as scanned from BS

Bandwidth: Few Different Beam Directions – Partial TEM

εr = 17.02

εr = 17

0.03147 λTEM

εr = 1

0.26 λTEM

0.49 λTEM

0.26 λTEM

0.49 λTEM

0.39939 λTEM

εr = 17

εr = 1
εr = 17

εr = 17
εr = 1

εr = 17

0.0625 λTEM

εr = 17

TEM Hard

0.49λTEM

0 0 02TEM TEM
z TEMf kβ π µ ε= =

Bandwidth: All Beam Directions – Partial TEM Hard

ε
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0.03147λTEM

εr = 1

0.26λTEM

0.26λ
TEM

0.49λ
TEM

0.39939λTEM

εr = 17
εr = 1

εr = 17

εr = 17
εr = 1

ε
r = 17

0.0625λTEM ε
r = 17

Broadside-
match (at TEM 

freq) well-
maintained over 

some scan 
angle range

On other hand, 
BS-match (at 

TEM freq) not 
maintained over 
large freq range

ε
r =

 1
5.

31
2

εr
4.698224852

0.03828λTEM

εr
4.698224852

0.26λTEM

0.49λTEM

0.26λ
TEM

0.49λ
TEM

0.39841λTEM

εr
4.698224852

10 10
0 ; 1.13TE TETEM

z TEM cutoffk f fβ = =

Bandwidth: All Beam Directions – Full TEM Hard

Freq Deviation more 
severe than scanning
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Bandwidth under Broadside Matched at TEM 
Frequency for Various Degrees of Miniaturization
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Higher the 
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the more 
narrowband

–10dB bandwidths for various miniaturization 
factors: 0.5λTEM × 0.5λTEM unit cell
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Physical Realization

Probe-Feeding of Miniaturized 
Dielectric-Loaded Quasi-TEM Hard 

Rectangular Waveguides

Feeding of Mini Guide: 2GHz TEM freq
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Feed probe
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N-Guide (cross-sectionally deformed version) L-Feed: For miniaturized guides
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waveguide transition 
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L-Feed
Fed from end-wall: 

compactness
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Reflection and Transmission values with L-feed

Frequency (GHz)

dB

L-feed simulated in a 10 GHz Teflon 
dielectric loaded waveguide.

Reflection

Transmission

L-Feed in N-Guide

Metal fin 

Metal fin 

Dielectric 

Metal post

Coaxial 
connector 

plength 

Coaxial 
connector 

L-feed 

pdist 

plength 

Front and side views
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dB

Offset (mm)

Feed offset from center of waveguide

Reflection
Transmission

Parametric 
simulation to 

determine 
correct offset 

from the center
of waveguide.
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N-Guide Results: Load, Shorted, Open
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Conclusions
• Difficult array transmission for highly-miniaturized 

(both planes) waveguide apertures
– Can be improved with impedance-matching
– BUT easier to miniaturize in E-plane within limited scan 

range (suits fractal example just now)
• Best performance within vicinity of TEM

– Not to underload or overload
• Possible to excite miniaturized guide
• Miniaturized waveguide as a possible system 

component (especially in MFA systems)

Conclusions
• Matching layers overcome poor transmission from 

strong miniaturization
– Narrowband though

• Stronger mini-factor, more narrowband: More severe in H-plane
• Nevertheless: good frequency isolation (simul ops of diff freqs)

– Matching (under broadside at fTEM) preserved over some 
scan-range

• For certain miniaturization factor, bandwidth about 
the same regardless
– partially or fully loaded
– hard or non-hard

• –10dB bandwidth of ≈ 1% possible for factors 
between 2×2 & 1×8: space for other freq elements


