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Introduction

• Many guided and radiative E.M. phenomena are 
studied in the “modal” κ-space: e.g. guided modes or 
crystal lattices, radiation patterns, etc.

• Whenever [pre-]fractal geometries generated via 
IFSs are concerned, spatial Fourier transforms r ↔ κ
can be easily computed, sometimes even closed-form.

• An IFS is an (infinite) iteration of similarities
whose Fourier transforms are still similarities in 
complex 3-space C3, e.g. r−r0 ↔ or α r ↔ κ/α .0ie− ⋅rκ
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Brief review on Iterated
Function Systems (IFSs)

An IFS is a set of p contraction
mappings wj: Rd → Rd (ratios
cj∈]0,1[), 1≤j≤p such that from
an initiator set E0∈Rd Nth-step
prefractal EN can be generated:
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Limit set E∞=limNEN is self-
similar and does not depend on 
E0. Its fractal dimension ‘dimB’
is often non-integer.

Šerpinskij gasket prefractals (p=3)
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Šerpinskij carpet prefractals (p=8)
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Šerpinskij and Menger
sponges

A Menger sponge (p=20) of cubic initiator set. Prefractals’
copies get shrinked by 1/3 at each new iteration. It is linearly
multiply connected too.

Šerpinskij sponge (p=26) Š3 is the “topological dual” to Menger sponge, i.e. it
is superficially multiply connected: no “tunnels” inside the domain, but
(26N−1)/25 “holes”, sank into the Nth prefractal.
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Spectral domain radiation
integrals
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Vector potential A(r) for radiation from an aperture Ω⊂R2 is the 
space convolution between aperture current densities J(r)=j(x,y)δ(z)
and the (spatial) Green’s function g(r).

TRICK: Integration on the aperture Ω is equivalent to integrating on 
the whole R2 plane the function times Ω’s characteristic function
χΩ(r), which is definied as 1 for r∈Ω and 0 for r∉Ω :

Spectral vector potential A(κ)=F[A(r)] is the product of spectral current
densities J(κ) times the spectral Green’s function;

Case of a constant feeding J(r)=j0χΩ(x,y)δ(z) is:( ) 12
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can be iteratively built starting from previous-iterate :

Šerpinskij sponges: κ-space 
self-similarity

A [prefractal] aperture/antenna radiation pattern is the Fourier
transform of χΩ computed for the wave vector at the (e.g.) spheric
shadow boundary, i.e.:  ∝ &A(κ(θ,ϕ))&2.

For a [pre-]fractal aperture the IFS’ spatial-domain similiarities become
spectral-domain’s similarities.

For Š3 (e.g. crystal lattice or radiating element/array shaped like a 
Šerpinskij sponge’s Nth prefractal),  cube-based characteristic function is a 
sum of 3D “rect” functions. Its Fourier transform is a sum of 
complex-rotated 3D “sinc” functions:
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Šerpinskij sponges: κ-space 
self-similarity

Slices of        , κ=(κx,κy,κz) for
fixed values 0≤κz≤100.
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IFS-generated self-similarity is well
reflected into κ-space self-similarity: 
translations of “rect” pulses in R3

become Complex rotations of “sinc”
pulses.
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• Artificial crystal lattice whose atoms/ions are placed into a Šerpinskij
sponge’s holes (with “masses” proportional to holes’ ones). χŠ’s Fourier transform
is proportional to band-energy distributions E(κ). =κ is the tight-bound
electron’s momentum.

A trivial application
• Šerpinskij patch antenna Š2 (e.g. 3rd iteration) whose far-field radiation
pattern can be estimated, or (ideal case) exactly closed-form computed in 
the case of constant aperture feeding.

211
eq eq2( ) ( ) ( )E h mν −= =κ κ κ κ=
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Conclusions

• Most methods for Electromagentics can still be used for
prefractal geometries by exploiting the simple nature of 
IFSs to overcome geometric problems.

• Singular integrals due to the Green’s function cannot
be simplified with methods like the one presented here.

• There are still simple transformation for the IFS in the 
spectral domain, which are the Fourier transform of 
those into the spatial domain (r ↔ κ).

• Spatial-domain self-similarities become multifractals 
into the spectral κ-space (e.g. radiation patterns).


