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Outline 

Background

• The             condition for beam splittingbeam splitting at broadside

• Characterization of the singlesingle leaky-wave beam

• MaximizationMaximization of the power density radiated at broadside

• Interpretation of the optimization conditionoptimization condition in terms of the

involved physical and geometrical parameters

One-dimensional leaky-wave antennas (line-source excitation)

β α=

• The Transverse Equivalent Network (TEN) model for 

a class of uniformuniform Leaky-Wave Antennas (LWAs)

Two-dimensional leaky-wave antennas (dipole excitation)

• Far-field behavior in the EE and and HH planesplanes of a dipole source



A Class of Uniform LWAs

high-permittivity superstrate patch (or slot) array
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The TEN Model
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The ‘Splitting Condition’ (1)

LeakyLeaky--wavewave aperture aperture fieldfield:: 0( )  xLWjk x
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The ‘Splitting Condition’ (2)

β α=
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• fsp = 20.687 GHz

• At f = 20.684 GHz (just below fsp) 

only one beam is present 

pointing at broadside

• At f = 20.69 GHz (just above fsp) 

two separate peaks exist,

pointing close to, 

but off (                    ), broadside1.44pθ = ± °



Characterization of the Single Leaky-Wave Beam (1)
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corresponds to having the 3 dB direction of the single leaky-wave beam at broadside

Consider the leaky-wave field 

launched on one side only of 

the line source

near broadside ( 10 )Mθ °≪
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The power density

of the single leaky-wave field

at broadside

is 3 dB lower than

its power density

at the pointing angle 

Characterization of the Single Leaky-Wave Beam (2)
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Maximum Power Radiated at Broadside (1)

0( ) ( ) xLWjk x
y xLWE x E k e−=

( )
( ) ( ) ( )

2
2 2

00 0
2 2 2 2 2

ˆ ˆ
0

ˆ ˆ

xLWxLW xLW

xLW

E kE k E k
P

k β α β α
∝ = =

+ +

( ) ( )
( )

0 2 2
0

2 cos

sin
xLWff

y xLW
xLW

jk
E E k

k k

θ
θ

θ
∝

−

depends on the residue of the spectral Green’s function (SGF) 

of the problem at the leaky-wave pole

We wish to find the frequencyfrequency at which          is maximum( )0P

How depends on its argument( )0
ˆ

x̂LWE k x̂LWk

How to model the dependence of      and      on frequencyβ̂ α̂



Maximum Power Radiated at Broadside (2)
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Maximum Power Radiated at Broadside (2)

Parameters of the structure:
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Geometrical Characterization of the ‘3 dB Region’(1)

Determines the location of the pole on the hyperbola            that gives rise 

to a power density at broadside 3 dB lower than its maximum value
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in the complex      plane 
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Geometrical Characterization of the ‘3 dB Region’ (2)
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Pole loci in the complex      plane 

are reported for both the losslesslossless and the lossylossy case
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Interpretation of the Optimization Condition (1)

Hypothesis: a leaky mode with equal values of its phase and attenuation constants is

supported by the considered structure ( )ˆ ˆ ˆ 1xLWk j jβ α δ= − = −
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Interpretation of the Optimization Condition (2)

Parameters of the structure:
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according to the optimization condition:
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Maximization of Power Density in the Lossy Case (1)

In the losslesslossless case, the power density radiated at broadside by an optimized structure,

considered as a function of       , increases indefinitelyindefinitely as SB SB → ∞
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does not tend to zero when        . Since the structure tends to become a closed PPW 

with PEC walls when                 , the radiation efficiency of the antenna tends to zero. 
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In fact:
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Maximization of Power Density in the Lossy Case (2)
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• The maximummaximum value of the power is proportional to 
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Extension to the 2D Case (1)

The far-field pattern of a 1           electric dipole on its broadside plane (H plane)

is the same as the far-field pattern of a 1    electric line source

A m⋅
A

We aim at showing that the far fields radiated by the electric dipole in both principal planes

(E and H planes) are the samethe same in a neighborhood of broadside 

at frequencies close to the optimum frequency derived for the 1D case

Observation:

SB• For large values of      

• At frequencies close
to the optimum frequency

The shapes of the radiation patterns in the two principal planes

are the samethe same in the neighborhood of broadside

3At  and opt dBf f − same beamwidth

3At dBf + same pointing angle, peak-

field value, and beamwidth



Extension to the 2D Case (2)

Parameters of the structure:
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Conclusions

Various features of radiation at broadside from 1D1D and 2D2D uniform LWAs

have been illustrated with reference to a class of antennas based on a

grounded slab with a cover modeled as a PRS

A fundamental condition is           β α=
• Determines the splittingsplitting of a single beam pointing exactly at broadside into

a beam with two distinct peaks pointing off broadside

• Gives rise to a maximummaximum value of radiated power density at broadside

• Has been used to derive a design formuladesign formula for the considered structures and

approximate asymptotic expression for the leaky-mode propagation constant

In the lossylossy case, an optimum value of the shunt susceptance equivalent to

the PRS has been derived to achieve maximum power density at broadside

The frequency range inside which the power density at broadside is not more

than 3 dB3 dB lower than its maximum has been geometrically characterized

in terms of the location of the leaky poles in the complex     plane and a

closed form expression for the fractional bandwidthfractional bandwidth has been obtained
x̂k


