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SUMMARY

e Introduction to the continuous spectrum of open 2D
waveguides

 Line-source excitation of a grounded dielectric slab (GDS);

singularities of the spectral Green’s function

o Steepest-Descent-Plane (SDP) representation

e Leaky modes and far-field patterns




INTRODUCTION TO THE CONTINUOUS SPECTRUM

OF OPEN 2D WAVEGUIDES




CLOSED WAVEGUIDES: THE PPW (1)
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CLOSED WAVEGUIDES: THE PPW (2)

Characteristic equation:

tan (k,a) = 0

Discrete spectrum

A

The relevant transverse operator is tan (Ta)

self-adjoint and positive semidefinite:
The eigenvalues are real and non-
negative




CLOSED WAVEGUIDES: THE PPW (3)
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CLOSED WAVEGUIDES: THE PPW (4)

Characteristic equation:

tan (k,a) = — ]Z

X

k =7 (<nm/a)

Y =71 cos(T,x)—ysin(T )

4 tan (ta)




CLOSED WAVEGUIDES: THE PPW (5)

Modal representation of the
field excited by a given source:
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CLOSED-TO-OPEN TRANSITION (1)

To =7 k, — =37

tanh (Ta)

Proper eigenfunction: Surface wave of the open waveguide
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CLOSED-TO-OPEN TRANSITION (2)

X

a 0

Generalized eigenfunction of the open waveguide
(belongs to the continuous spectrum,
and is bounded at infinity)




THE CONTINUOUS SPECTRUM (1)

Generalized eigenfunction: transverse behavior
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THE CONTINUOUS SPECTRUM (2)
Generalized eigenfunction: longitudinal behavior

E (k,z,2)]

H, (k,,z,2)

= (k,x)e ™ k. eR

J

k‘z —_— \”{702 — k‘j c % Radiative part

of the continuous spectrum

ko= —j /kf _ ks = Reactive (evanescent) part

: of the continuous spectrum

The eigenfunctions in the radiative part allow to describe radiation
from sources in the presence of open waveguides

The eigenfuntions in the evanescent part allow to represent energy storage
In the vicinity of such sources (like modes below cutoff in closed waveguides)




LINE-SOURCE EXCITATION

OF A GROUNDED DIELECTRIC SLAB




GDS EXCITED BY A LINE SOURCE

Field at the air-slab interface: representation as an inverse Fourier transform:
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SPECTRAL GREEN’S FUNCTION (SGF) (1)




SPECTRAL GREEN’S FUNCTION (SGF) (2)

Unit-amplitude line sources:

Ji(2,2) =1-6(z + hy)6(2) A/m?
M,(z,2) =1-6(x + hy)6(z) V/m?
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SINGULARITIES OF THE SGF (TE CASE) (1)

Let us consider the SGF as a function of the complex variable £,
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1) POLES

Kye cOs (kyeh ) + Jkyo sin (kh) = 0
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TRANSVERSE RESONANCE

7 = jZ" tan(k_h)

78 + 4718 tan (k,.h) = 0

The poles of the SGF are the zeros of the characteristic equation, i.e., they
are the propagation constants of the modes supported by the GDS




SINGULARITIES OF THE SGF (TE CASE) (2)

2) BRANCH POINTS
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The SGF is an even function of £, No branch point arises from k.

Two branch points at k, = 4k, arise from £k,




SOMMERFELD BRANCH CUTS

Branch cuts may be defined by arbitrarily joining the branch points k, = 4k,
and the point at the complex infinity

By enforcing the finiteness of e 7%0* for z — 400

Im {kyo 1 <0

The Sommerfeld branch cuts are thus defined by the condition
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RIEMANN SURFACE OF THE SGF

TOP (or proper) sheet

BOTTOM (or improper) sheet




PROPER POLES OF THE SGF

Proper poles correspond to bound modes (surface waves) of the GDS
Proper eigenfunction of a lossless GDS have only real eigenvalues:
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FIELD AT THE AIR-SLAB INTERFACE (1)

Inverse Fourier transform: integration path in the complex plane
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FIELD AT THE AIR-SLAB INTERFACE (2)

Path deformation in the lower half plane (z > 0) of the TOP Riemann sheet:
SPECTRAL REPRESENTATION
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STEEPEST-DESCENT-PLANE

REPRESENTATION




FIELD IN THE UPPER HALF SPACE

kZL"O —

In order to enforce the radiation condition at infinity




CHANGE OF VARIABLES

Polar coordinates in both the spatial and spectral domains:
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THE STEEPEST-DESCENT PLANE (1)
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THE STEEPEST-DESCENT PLANE (2)

The corresponding integration path C
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Integration along the real axis




THE STEEPEST-DESCENT PLANE (3)

The steepest-descent path

1o p
| - Imig}
>

gl

Integration along the SDP




THE STEEPEST-DESCENT PLANE (4)

The steepest-descent path
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Integration along the SDP




THE SDP REPRESENTATION (1)
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+Residue contributions
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from captured poles




THE SDP REPRESENTATION (2)
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LEAKY MODES

AND FAR-FIELD PATTERNS




IMPROPER POLES OF THE SGF (1)

Improper poles arise, e.g., as the analytic continuation of proper poles
below the cutoff frequency of the corresponding surface wave

TE and TM surface waves and their cutoffs:

Aﬁz /k() Aﬁz /k()
TE, TE, ™, TM,




IMPROPER POLES OF THE SGF (2)

Leaky wave




LEAKY MODES: ANGLE OF DEFINITION

Angle of definition (or capture) ¢,

1 1 Im{¢}
BOTITOM

Angular region where the leaky mode
contributes to the field in the SDP
representation:

0> 0.




LEAKY MODES: POWER FLOW

B, = kysinb,

region of weak fields

regior’;1 of exponential growth

Within the angle of definition, the leaky-mode field
transversely increases exponentially

For small values of the attenuation constant «,: 0,




LEAKY MODES: APERTURE FIELD

EyLW(z) = —]Res[Ey (kzLW )]e_ijLW'Z'

The corresponding far-field radiated by this aperture distribution is simply
obtained through a Fourier transform:

27k cos 6

EEW(0) o cosOELY (ky sin §) =
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LEAKY MODES AND RADIATION PATTERNS

The leaky mode radially decreases exponentially

in all the directions within its angle of definition
v

/ It does not contribute directly to the far field

HOWEVER:

The leaky mode may dominate the aperture field at the air-slab interface

The radiation pattern may be well approximated by means of the
Fourier transform of the leaky-mode aperture field alone
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