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Outline

� Generalities of One-Dimensional (1D) Periodic 
Structures

� Axially Periodic 2D Structure: A Metal Strip Grating 
on a Grounded Dielectric Slab (MSG-GDS)

� Design of 1D Periodic Leaky-Wave Antenna: 

A Printed Leaky-Wave ‘Bull-Eye’ Antenna with 

Suppressed Surface-Wave

� Axially Periodic 3D Structure: A Periodically Loaded 
Microstrip Line
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Geometry: 

Axially Periodic 2D Structures

1D periodic structure: Translational symmetry along the direction z, 

infinitely extended domain of periodicity along z with spatial period equal to p
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2D Structure: Absence of y variation in the structure and in the field [∑( )/∑y=0]
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Axially periodic structure: Propagation of Guided and Leaky Modes along 
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Geometry: 

Axially Periodic 3D Structures
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1D Periodic

Structures
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3D Structure: General transverse variation of the field [∑( )/∑y≠0]

1D periodic structure: Translational symmetry along the direction z, 

infinitely extended domain of periodicity along z with spatial period equal to p

Axially periodic structure: Propagation of Guided and Leaky Modes along 

the direction of periodicity z
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Geometry: Linear (Phased) Arrays 

of Leaky-Wave Line Sources
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1D Periodic
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1D periodic structure: Translational symmetry along the direction y, 

infinitely extended domain of periodicity along y with spatial period equal to p

Leaky-Wave line source: Propagation of Guided and Leaky Modes along the 

infinite uniform direction z

p



General Radiative Properties

Periodic loading of a basically slow-wave open structure produces 

a fast complex (leaky) wave which continuously radiates power 
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Axially

Periodic

2D&3D Structures

1. Very low attenuation rate and large effective aperture: High Directivity

2. Various degrees of freedom in control of aperture distribution: Pattern Shaping

3. Backward and forward leakage regimes: Wide-Angular Beam Scanning 
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Characteristic Features of 

Traveling Waves 
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0/ 1p λ <<
Basically slow, periodic loaded structures

in general support bound modes or surface waves. 

Radiation in the forward quadrant is in some cases permitted.

Recently proposed quasi-uniform periodic structures (Metamaterials)

have revealed scanning capability in both the forward and backward quadrants 

0/ 1/ 2p λ > When p is sufficiently large, a fast complex (leaky) wave appears,

which gives rise to radiation at some angle between backfire and endfire

Mutual interaction of periodic elements is responsible for mode-coupling resonances, 

thus affecting the formation of pass and stop bands, the operating bandwidth, 

as well as the radiation properties and scan angles.

Appropriate analysis of EM fields 

and accurate description of guided and leaky modes 

in axially periodic 2D and 3D structures

Axially

Periodic

2D&3D Structures



8
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( , ) ( , )x z p x z+ =P P

0 0zk jβ α= −

Bloch-Wave Form:

Generally complex fundamental propagation constant kz0:

β0 and α are the corresponding phase and attenuation

constants

Unique determination of the guided-wave field 

at any point on an infinite periodic structure 

solely from the knowledge of the field distribution 

within the Unit Cell (i.e., a single period of width p)

Floquet’s Theorem
p

w

h

x

z

A time-harmonic (e jωt) electromagnetic field E(x,z) of a normal mode 

guided along an axially periodic 2D structure [absence of y variation,

[ ∑( )/∑y=0 ] possesses the property:

( ) ( )0, ,zj k p
x z p e x z

−+ =E E



Spatial Harmonic Expansion
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The periodic vector function P(x+p,z) = P(x,z)
may be expanded in a Fourier series
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The Fourier series expansion of a Bloch Wave 

indicates that the field of a normal mode is 

expressible in terms of an infinite number of 

traveling waves, called spatial harmonics
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The wavenumbers kzn represent the spatial harmonic 

axial propagation constants, with different phase

constants βn and the same attenuation constant α

( )n xa Spatial harmonic complex amplitudes



General Properties of the 

Spatial Harmonic Expansion
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A single spatial harmonic 

does not satisfy 

boundary conditions

Very often a single dominant n=0 spatial 
harmonic describes the field adequately. 

However, during mode coupling resonances

more spatial harmonics are required

( ) 0 , as n x n→ → ∞a

A normal mode of the periodic structure 

is represented by the entire

spatial harmonic expansion

The spatial harmonic expansion

constitutes a field representation

alternative to that in terms 

of ordinary waveguide modes

The spatial harmonics also 

represent axially traveling 

waves along z, with uniform 

amplitude for real values of kz0
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General Properties of the 

Spatial Harmonic Expansion
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ω ω
β β π

= =
+

Each spatial harmonic 

possesses a different axial 

phase velocity:

For high values of |n| all spatial harmonics 

are axially slow waves. For β0 ≥ 0, the n > 0 
are forward-traveling, all those with βn < 0 
are backward-traveling.

2 2
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0 0 0
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0, 1, 2,...

xnjk x

n n

xn zn

x e

k k k

n

k ω µ ε

−=

= −

= ± ±

=

a a In the exterior region, the field of each spatial

harmonic constitutes a homogeneous 

or inhomogeneous plane wave. 

Each spatial harmonic may independently 

radiate in free space.

Each spatial harmonic 

possesses the same group 

velocity of the normal mode:

0

gn g

zn z

d d
v v

d d

ω ω
β β

= = =

Each spatial harmonic carries power in the 

direction of periodicity. However, the total 

axial power flow is not a sum of axial 

powers carried by the individual space 

harmonics.
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Modal Analysis of 

Axially Periodic 2D Structures

Dispersion relation of 

an axially periodic, 

traveling-wave 

structure

( )0 0D , 0zk k = ( )0 0 0z zk k k=

All spatial harmonic wave numbers must be solutions of the same dispersion equation

Fundamental 

propagation constant 

of a normal mode as 

function of frequency

0 02 2zn zk k n p n p jπ β π α= + = + −

The classification of guided-wave types on these structures is based on the 

traveling-wave properties of each spatial harmonic in the exterior region (free space)

( ), xn znj k x j k z

n

n

x z e e
+∞

− −

=−∞

= ∑E a

2 2

0xn zn xnjk k k α= − ≅ − Slow-Wave Type 

(Bound)

2 2

0 nxn n xzk k k β= − ≅ Fast-Wave Type 

(Radiative)
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The Brillouin Diagram gives most of the 

properties of open axially periodic structure: 

it is a graphic representation of the 

dispersion relation of the space-harmonic 

axial phase constants
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The nth spatial harmonic is axially 

fast only if the corresponding point 

(βnp/π,k0p/π) of the dispersion curve 
is located inside the FWR
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The nth spatial harmonic is axially 

slow only if the corresponding 

point (βnp/π,k0p/π) of the 
dispersion curve is located 

outside the FWR
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The Brillouin diagram permits a 

rapid determination, as a 

function of the normalized 

frequency, of the number of 

radiating beams and of their 

respective angles of radiation
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sin tan
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β π β π
θ ψ

π
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For the nth radiating harmonic 

the relation between the peak of 

the radiation lobe measured 

from broadside θθθθn and its angle 
ψψψψn with respect to the k0p/π axis 
in the Brillouin diagram is:

0
n

ψ >

h

x

z

θn

0 0
0 2n p kβ π< + <

Forward-Radiating Wave

0
n

θ >

Backward-Radiating Wave

0 0
2 0k n pβ π− < + <

h

x

z

θn

0
n

ψ < 0
n

θ <
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Brillouin Diagram: 

Closed 1D Periodic TEM Structures
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Brillouin Diagram of an axially 

periodic structure repeats

in βp/π with period 2p/π

The dispersion relation of the spatial harmonics repeat

with a translation equal to 2n parallel to the abscissa axis

If the periodic structure is reciprocal (β0 ↔ −β0) the Brillouin diagram 
is symmetric with respect to the ordinate axis

The Brillouin diagram is symmetric with respect to the axes:

, 0, 1, 2,...n p n nβ π = = ± ±

In the limit of Vanishing Loading
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θBrillouin Diagram: Radiation 

Regions in Open 2D Structures

Superposition of an infinite 

number of identical 

(k0p/π, βnp/π) planes, 
one for each n, which individually 

possess their own FWR

The Radiation Region Rn of the n
th harmonic is the set of points (k0p/π, β0p/π) of the 

n=0 harmonic, corresponding to which the nth harmonic is located in the FWR

( ) ( )2 2

0 0R : 2 0, 0, 1, 2,...n k p p n nβ π− + ≥ = ± ±

All spatial harmonics are simultaneously slow in the shaded triangular regions with k0p < π< π< π< π, 
which are termed the Bound-Wave Regions (BB)

In the limit of vanishing loading
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θBrillouin Diagram: Mode Coupling 

in Open 2D Structures
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Mutual interactions between (different) backward (vg<0) - and forward (vg>0) -
traveling space harmonics give rise to Mode Coupling: 

Contra-Directional Coupling at ββββββββ p/p/ππππππππ========nn, , n=0,n=0,±±±±±±±±1, 1, ±±±±±±±± 22,..,..

Closed Stop BandClosed Stop Band: The entire modal field is bounded and highly attenuated 

(α/k0>>0), the interaction between harmonics forms a standing wave along z

Open Stop BandOpen Stop Band: Coupling between two spatial harmonics radiating at 

broadside; high degradation of the radiation properties at broadside.
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Spectral Properties

of Spatial Harmonics 

The Dispersion Relation of an open axially periodic traveling-wave structure is an odd

function of kxn, for n=0,±1, ± 2,…; the overall Riemann Surface of D(kz0,k0) consists 

of a denumerably infinite number of sheets

( ), xn znj k x j k z

n

n

x z e e
+∞

− −

=−∞

= ∑E a
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xn xn zn xn xn

k k e k k

k k e k k j

n

φ

φ β α
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−
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Top Sheet of kxn
2:

Proper Determination
( )

0 2

m 0

0

xn

xn

k

φ π

α

≤ <

ℑ <

>



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
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Bottom Sheet of kxn
2:

Improper Determination
( )

2 4

m 0

0

xn

xn

k

π φ π

α

≤ <

ℑ >

<







A guided Bloch Wave is a superposition of 

various proper and improper spatial harmonics

A proper surface wave E(x,z) is characterized by a real value of kz0 and 

all axially slow proper spatial harmonics

For complex values of kz0, E(x,z) is called a proper complex Bloch Wave when all spatial 

harmonics are proper, and is otherwise termed improper



20

p

w

h

x

z

Spectral Properties

of Spatial Harmonics 

( )m 0xnkℑ < ( )m 0xnkℑ >

2 2 2 2
0 2xn n nk k jβ α β α= − + +

( )
( ) ( )

2

2 2

e 0

m 0 0

xn

xn xn

k

k m k

ℜ ≥


ℑ > ↔ ℑ <

kxn
2 may change sheets only 

when either the branch cut or 

the branch point kxn=0 

is crossed
2 2

n 0

0

2

0

kn

p

βπβ
α
 <= − 

=
or

0

0

n kβ
α

= ±
 =

branch cut crossing branch point crossing

Im[ kxn
2 ]

Branch cut

Re[ kxn
2 ]

Branch point

Im[ kxn
2 ]

Branch cut

Re[ kxn
2 ]

Branch point

0 2φ π≤ < 2 4π φ π≤ <
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θBrillouin Diagram and Spectral 

Properties of Spatial Harmonics
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A Backward-Radiating spatial harmonic is proper and its field decays away from the structure:

BackwardBackward--Leaky WavesLeaky Waves

A Forward-Radiating spatial harmonic is improper and its field grows at infinity along x :

ForwardForward--Leaky WavesLeaky Waves



A Canonical Axially Periodic 2D Structure:

Metal-Strip Grating on a Grounded Dielectric Slab

� Metal-Strip Grating on a Grounded Dielectric Slab (MSG-GDS): 

modal analysis along the axial direction of periodicity z

22

� 2D Structure: Absence of y variation in the structure 

and in the field [∑( )/∑y=0]

� Translational symmetry of an axially periodic structure: 

Infinitely extended domain along the axial direction of periodicity z, 

with spatial period equal to p

z

x

p
W

h

Grounded Plane

Metallic Strips

εr



MSG-GDS: Spectral Representation 

of 1D Periodic Currents
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Discrete spectrum of the spectral currents 

as function of the variable kz, ∆kz → n 2π/p
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∫

Fourier Transform of 

the current on the strip 

within the Unit Cell

Orthogonality

relations for Spatial 

Harmonics



MSG-GDS: Integral Equation 

within the Unit Cell
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Integral Equation obtained 

by enforcing that 

the tangential electric field 

vanishes on the strip

within the Unit Cell
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MSG-GDS: Method of Moments 

Discretization of the Integral Equation
p
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z
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Representation of the transversal 

and longitudinal components of the 

unknown currents by means 

of an appropriate set

of basis functions

(Chebyshev polynomials)
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2D Structure



MSG-GDS: Dispersion relation for 

TEz and TMz Modes
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( ) ( ) ( )0 , A 0TE

yy zZ k f  =
 

The Eigenvalues of the homogeneous linear system

provide the Propagation Constants kTEzn (k
TM
zn), with n=0,±1, ± 2,…,

of the spatial harmonics of TEz (TMz) modes as function of frequency
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0 02 2 , 0, 1, 2,...zn zk k n p n p j nπ β π α= + = + − = ± ±

The propagation constant of each spatial harmonic is easily determined 

from the fundamental propagation constant



MSG-GDS as a Perturbation of 

Open and Closed Structures
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Mode Coupling in MSG-GDS:

Pass Bands and Closed-Stop Bands
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MSG-GDS:

Improper Transition Region
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MSG-GDS:

Proper Transition Region
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Design of a printed leaky-wave 

‘bull-eye’ antenna 

with suppressed

surface-wave

Paolo Baccarelli
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� A leaky-wave antenna based on a multiple-ring 
structure (bull-eye)

� This antenna is characterized by a high efficiency and 
reduced edge diffraction and operates on the n=-1 
harmonic of the TM0 mode

� A design procedure based on the dispersion behavior 
of an infinite 1D periodic linear array is presented

� Numerical results obtained through a commercial 
software (EnsembleTM) on the radiated field are 
presented
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Design technique (1)

y

z

∞ ∞

∞ ∞

φ

ρρρρ

∞ ∞

∞

∞

ρρρρ

Infinite ‘bull-eye’ structure Infinite 1D periodic linear array of microstrips

≡along ρρρρ

We consider TM and TE modes with respect of the normal z direction

Beyond the near field: each mode has the same radial propagation 

constant kρρρρ as the corresponding mode of linear array

Dispersion properties
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‘Bull-eye’ antenna

� A series of concentric annular microstrip rings of 

width w and radial period p

x

εr
h

w p

Feeding line
Slot

2r

θ

z

y

Feeding line

z

Slot

φ

Top view

Side view

� Excitation through a rectangular slot etched on 

the ground plane

Structure description
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Design technique (1)

( ) 1

0

sin M
k

βθ −
≃

1

0

1 0,
k

β−− < <

Aim: obtain a leaky-wave radiator 

in absence of any other physical 

leaky or surface wave

� The operation is based on the excitation of the 

fundamental TM0 mode of the periodic structure

� Three possible operating mode when the TM0 mode 

radiates

1. TE1 mode in stopband region

2. TE1 mode nonphysical

3. Suppressed TE1 surface-wave 

� Radiation through the n=-1 harmonic of the TM0 mode

in the backward quadrant:

1

1 2 pβ
π

0k p

π

TM0

TE1

1

1 2 pβ
π

0k p

π

TM0

TE1

TM0

1

1 2

0k p

π
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Design technique (2)
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β0p/π

20rε =

h = 1.4 mmd = 3.38 mm

w/p = 0.2

TM0

TE1

Operating mode 1

17.42 GHz

Shaded area [19.21-23.5] GHz

Part of the radiative 

region of the TM0 is 

superimposed to the 

TE1 stopband region

1. Very high dielectric constant (not 

suitable for antenna substrates)

2. The TE1 stopband region could 

be very narrow

Drawbacks

Structure parameters:
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Design technique (3)
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β
0
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6.8rε =
h = 1.4 mmd = 5.6 mm

w/p = 0.2

TE1 below cutoff

TM0 leaky

Shaded area [20.55-25.14] GHz

TE1

TM0

Operating mode 2

When the TM0 mode 

radiates the TE1 mode is 

in a non physical region 

(real improper solution)

1. High dielectric constant (not 

suitable for antenna substrates)

2. The TM0 radiative region and the 

TE1 nonphysical region are 

superimposed only in a narrow 

frequency range.

Drawbacks

Structure parameters:
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Design technique (4)

� Substrates employed in leaky-wave planar antenna 

design typically are 2 4rε< <

� The cutoff of the TE1 mode when is:4 / 3rε >

1

4 1 2

TE

r r

c c
f

h hε ε
< <

−

Grounded slab
Parallel-plate waveguide

TE1 cutoff

TM0 lies inside this 

shaded area

1

1 2

0k p

π

pβ
π

1/ rε
� For substrates with low 

dielectric constant TM0 starts 

to radiate closer to the top of 

the triangle

Operating mode 3
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Design technique (5)

� In order to have surface-wave suppression for 

TE1 we impose: 
0

4 1r

c
f

h ε
>

−
where f0 corresponds to the 

top of the triangle

1

1 2 /pβ π

0 /k p π
0 1
k p

π
=

02

c
p

f
=

2 1r

p
h

ε
<

−

� In order to avoid grating lobes: when

2

0

1
k

β− < − 0 BS
p λ< at broadside

Operating mode 3

� From the relation between f0 and the 

period p at the top of the triangle:

0 / 2dβ π =

40



Numerical results (1)

3.6rε =

10 elements

0

0,2

0,4
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9 elements

h = 2.7 mm

f = 19 GHz

f = 17 GHz

p = 7 mm

w = 3.15 mm

At φ=90° far field is 
mainly due to TE 

modes. No directive 

beams are present in 

this plane because 

TE modes are 

avoided.

Structure parameters:
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Structure parameters:

Cutoff of TE1 outside the triangle

TM0 radiative region

TE1 in 

stopband

Dispersion diagram for the 

n=-1 harmonic

Phase constant

Attenuation 

constant

Range of 

analysis
14 GHz 16.5 GHz

16.5

Inside this frequency range the 

attenuation constant is slow varying

15.19 GHz
4 1−

≃

r
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h εεεε

0 15 GHz≃f

TE1 slab
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Numerical results (3)
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� A microstrip leaky-wave antenna has been designed, 

based on the excitation on a series of concentric, 

radially-periodic annular rings of the fundamental TM0

mode in a leaky regime. 

� By properly designing the physical and geometrical 

parameters of the structure, it is possible to avoid the 

presence of any other mode in a guided regime or in 

a physical leaky regime.

� High radiation efficiency and low edge-diffraction 

effects are expected and numerically verified from the 

performance of practical finite structures.
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Axially Periodic 3D Structure: 

A Periodically Loaded Microstrip Line
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Axially Periodic Printed Lines

46

Unit Cell Unit Cell

� Axially Periodic Printed Lines: Linear array of patches, periodically 

loaded microstrip lines (Filters, Leaky-Wave Antennas, ‘Metamaterials’)

� Modal Analysis (infinite array hypothesis): Unit-Cell Method and 

Spatial Harmonic Expansion (Floquet)

� Arbitrary Geometry of the metallization within the Unit Cell: Method 

of Moments in the Space Domain, Rao-Wilton-Glisson (RWG) 

triangular Basis Functions



Method of Moments 

in the Space Domain
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Mixed Potential 

Integral Equations

(MPIE)
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Mixed Potentials (1) 1D Periodic

Mixed Potentials
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The Modified Brillouin Diagram
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� An open 1-D periodic microstrip line is characterized by unbounded 

cross-sections along x and y directions: Space and Surface Leaky-
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Guided Bloch-Wave Integration Paths 

in the Complex Plane
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Closed-Stop Band Regime Integration Paths 

in the Complex Plane
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Backward Surface 

Leaky-Wave Regime
Integration Paths 

in the Complex Plane
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Backward Space 

Leaky-Wave Regime
Integration Paths 

in the Complex Plane
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Forward Space 

Leaky-Wave Regime
Integration Paths 

in the Complex Plane
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Forward Surface 

Leaky-Wave Regime
Integration Paths 

in the Complex Plane
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