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HF SCATTERING FROM LARGE OBJECTS

e An efficient and accurate description of scattering phenomena at high
frequency is of interests in many applications.

— design and analysis of antennas (e.g., reflectors)

— prediction of Radar Cross Section

—p propagation in complex environments (e.g., urban propagation)

—p antenna installation and inter-antenna coupling (e.g., on ships, aircrafts,
space platforms...)




HF EDGE DIFFRACTION TECHNIQUES

e The most important theory that has dominated this scenario in past
few decades is:

» Geometrical Theory of Diffraction (GTD) in its
Uniform version (UTD, UAT)

e Other important theory is:

» Physical Theory of Diffraction (PTD*) in its original
version

e Both UTD and PTD are ray-optical theories: at high frequency, the
scattering from a complex object may be obtained as a superposition
of rays emanating from “isolated” flash points.

*P. Ya Ufimtsev “Method of edge waves in the physical theory of diffraction” Soviet Radio Publication House,
1962. English Version: Air Force Foreign Technology Division, FTD-HC-23-259-71, Sept. 1971 (normal
incidence).



GEOMETRICAL THEORY OF DIFFRACTION

e The exact field is the sum of a geometrical optics field (GO) and a

diffracted field.
E=EW+E“|

e The GO field accounts for
direct, and reflected ray-fields.

e The space surrounding the
object is divided into regions
separated by the reflection and N
shadow boundaries. ISB >

e The diffracted field is the contribution which must be added to the GO
to obtain the exact field.

e The GTD field provides an diff td
. S EY" - E¢
asymptotic approximation of the
diffracted field.




I
PHYSICAL THEORY OF DIFFRACTION

e Ufimtsev’s basic approach:

“First, we will investigate the rigorous solution of this problem
(canonical). Then we will find its solution in the physical optics
approach. The difference of these solutions determines the field created
by the non uniform part of the current (fringe wave current).”

e The scattered field is the sum of a physical optics field (PO) and a

fringe wave field.
E=E +E”+E" l

e The PO field arises from the
induced surface currents on the
object J™ £

e The FW field arises from the B g e
non uniform surface currents on
the objects J".



PHYSICAL THEORY OF DIFFRACTION

e The NU currents must be added to the PO currents to obtain the total
currents, that radiates the scattered field.

e The PTD field provides an asymptotic approximation of the fringe wave

field.
EfW _ Eptd l

e One major advantage of the PO
approach is that both the incident and
the PO fields are continuous across
the RSB and ISB. As a consequence,
also the FW field and its asymptotic
approximation (PTD field) are
continuous across the same SB.




GTD VERSUS PTD

The PO field is divided into a PO surface contribution E° and a PO
diffracted field E[°.

E® =EP+EP

e The PO surface contribution is the leading term of the asymptotic
evaluation of the PO surface radiation integral for kK — co.

;\ ESO — EI‘

JP T

PP =P PP P PP =

= - E” =0

As a consequence, the sum of the fringe wave and the PO diffracted
field is equal to the diffracted field.

E§0+EfW:Ediﬁ ’_—|> EfW:Ediff _ESO




GTD VERSUS PTD

The PO diffracted field is asymptotically approximated by the PO edge-
diffracted contribution EZ; .

EPX ~ER |

The PO edge-diffracted contribution is the leading term of the
asymptotic evaluation of the PO radiation integral for kK — oo,

The difference between the GTD field and the PO edge-diffracted field
Is the PTD field.

[ E W — gff —Ego 'F_>[ E P :Egtd_Eé)Ccl) ,

At high frequency, GO and PO
predictions may be augmented
by GTD and PTD field
respectively.




RAY METHODS AND CANONICAL PROBLEMS

e Both GTD and PTD are ray-optical methods: upon an identification of
stationary surface and edge points (ray tracing), the proper ray-field is
associated to each ray.

e The locality principle is essential: when a radiating object is large in
terms of a wavelength the scattering and diffraction is found to be a
local phenomenon,i.e., it depends only on the nature of the boundary
surface and the incident field in the immediate neighborhood of the
“flash” points.

e The actual scatterer IS
substituted by local canonical
configurations at the points of
reflection and diffraction.




LIMITATIONS

e Ray-Optical methods are not applicable when isolated stationary edge
points cannot be identifies.

near field
caustic

e Observation point is located at a
caustic: all points along the

edge, or on a finite portion, are - ¥=--- r-o------
stationary.

caustic at
infinity

e Observation points is located
outside the cones of diffraction:
no edge stationary points exists.

RCS of poligonal flat plate '




INCREMENTAL THEORIES FOR EDGED BODIES

e The original idea is that an illuminating field undergoes a diffraction
process at each incremental element of the edge (Young, Magqgi,
Sommerfeld).

e The observed “field pattern” (ex: diffracted field) is thus caused by the
interaction between the “superposition” of elementary contributions
distributed along the actual edge, and the GO field. i

e The mathematical formulation of
this “idea” may be
asymptotically expressed as a
line integral along the edge
contour.

R (r) ~ IFdiff (r.)d

edge contour |




INCREMENTAL THEORIES FOR EDGED BODIES

e At high frequency, each incremental field contribution F" (r,)is estimated
from a local uniform, Iinfinite, canonical configuration that more
appropriately models the actual discontinuity.

e The two prevailing techniques to derive incremental contributions are
the Current based and the Field based methods.



CURRENT BASED METHODS

e Incremental fields contributions are deduce from the currents of local
canonical problems.

e Incremental Length Diffraction Coefficients (ILDC):

» K. M. Mitzner, Northrop Corp., Tech. Rep., Apr. 1974
» R. A Shore and A. D Yaghijian, IEEE AP, Jan. 1988.
» A.D. Yaghjian......

e Equivalent Edge Currents (EEC):

» A. Michaeli, IEEE AP, Mar. 1984
» A. Michaeli, IEEE AP, July,1986.

e Equivalent Edge Wave (EEW):

» D. |. Bouturin and P Ya. Ufimtsev, Sov. Phys. Acoust. Jul.-Aug. 1986.
» P. Ya. Ufimtsev, Electromagnetics, Apr.-June 1991.



FIELD BASED METHODS

e Incremental fields contributions are deduce from the field of local
canonical problems.

e Incremental Diffracted Field:
> A. Rubinowicz, Acta Phisica Polonica, 1965.

e Equivalent Current Method (ECM):

» R.F. Millar, Proc. IEE , Mar. 1956.
> C.E. Ryan and L. Peters, Jr., IEEE AP, May 1969.
» E.F.Knottand T. B. A. Senior, IEEE AP, Sept.1973.

e Incremental Theory of Diffraction (ITD):

> R. Tiberio, S. Maci, IEEE AP, May 1994.
> R. Tiberio, S. Maci, and A. Toccafondi IEEE AP, 1996-2004.



EQUIVALENT CURRENT METHQOD

e Theincremental field F;" (r,) attributed to the edge element at r_may be
thought as generated by traveling-wave electric 1,and magnetic M, line
current, located at r, and directed along the edge tangent €.

e_ jk|Re|

R

Fo (re)=%[éex(éexé)§|e@')+(ée><é)Me<Q'>]

-

e ‘

—_—
-
—

e The constant propagation factor is kcosg, .

e |t assumed that the value of I, and M, depend linearly on the incident
electric and magnetic field.



EQUIVALENT CURRENT METHQOD

e Each traveling-wave current radiates a conical wave

I ké’ejﬂ'/4 Jk|R |
8-E'(P) ~ — I
. ke!™' @ KR
H"(P) ~ — M (Q' =

o If R.>dand R, < p, , the components of the GTD edge-diffracted field
at P by a local canonical configuration at Q’, can be approximated as:

JklR |

R,|

JklR |

R,

& E°(P) ~ [& E'(Q)ID, (4,41, £) "

& H'(P) ~[&- H (Q)ID, (4. 4. )




EQUIVALENT CURRENT METHOD

e Comparing the above expressions outside the shadow boundary
transition region:

Vere ™ [& E'(Q)]

Ie(Q'):_ é/\/E Sin,B; Ds(¢e’¢e’ﬂe)
M.(Q)=-= @JE [e';'(ﬁ‘?')] D, (483 )

e The current are “equivalent” since it depends on the angles of incidence
and observation at the point of diffraction.

e Unlike GTD, the fields radiated by EC remain valid even within the
caustic regions of edge-diffracted rays.

e These currents are defined only for observation points lying on the Keller
cone of half-angle 3, .

D, (¢.4.. 5., .)

. . y__v8ze ™ [&E'(Q)]
e An heuristic extension to Q)= 7"
. . . SNk Jsing.sing,
include points outside the Keller v ea i
cone have been suggested I\/Ie(Q'):—;VSEe [e_'H,((?)] D, (¢..4.. 5., 3.)
(Knott and Senior). Jko Jsngsing,




EQUIVALENT EDGE CURRENT

The diffracted field by a local canonical configuration (pec) locally

tangent

ES" (P)~ jk¢ [[RX[R

The surface radiation integral is

at Q’ is (half-plane):

T

total induced electric current density

approximated in far field as:

- e - = o = = -

“incremental strip

g K

Ay

r‘x{r‘x | J(rs)ejk(f'a)“du}
0

The incremental diffracted field associated to Q’ is
the end-point contribution to the field generated by
the surface current density on an infinite extended
incremental strip, starting at that edge point.



EQUIVALENT EDGE CURRENT

e Itis found that the equivalent edge current are

uxe .

1(Q) =z (&xP)x [I(r,)e" ™ du
r><e| 0
M (Ql):é, }IXAez é.fXIJ(rS)ejk(rA-l])udu
R
e When the total current is applied, the above 199(Q") = L'{J(rs)}

expressions provide an asymptotic
approximation to the diffracted field.

M #(Q) = L"{JI(r,)}

e When the PO surface current density is . b
applied, the above expressions provide an :>|ed(Q)=|—{J (ro)}
asymptotic approximation to the PO edge- M2(Q") = L"{J™(r,)}

diffracted field.

e When the FW (non uniform) surface current | Q) =L'{I™(r.)}
density is applied, the above expressions i /s v nus
provide an asymptotic approximation to the M™HQ) = LI (r)

PTD field.



EQUIVALENT EDGE CURRENT

e Oiriginally the strip was chosen normal to the edge

e Michaeli (1984) derived a set of
EEC for the wedge diffracted
field.

rAan a1 LA A a1l d A
I=[E(Q)-e]WDE+[H(Q)-e]WDH
M = H (Q')-é]j—iDa”

e Valid for arbitrary direction of observation.

e The crosspolar component vanish at stationary point S=/4".

e The incremental contributions are singular on a half-cone with tip at the
edge, axis along the incremental strip and interior tip angle 6, = 5" .



INCREMENTAL LEGTH DIFFRACTION COEFFICIENTS

Mitzner (1984) first considered the fringe wave surface current density
along the strips normal to the edge.

He provided expressions
Lenght
Diffraction Coefficients (ILDC).

terms of Incremental

[ ptd
Fﬂ

ptd
F¢

F™(Q) =

in

D
0

B’

D
D

pe’

o9

E,(Q)

E.(Q)

e Jkr

47y

The ILDC’s are singular on a half-cone with tip at the edge, axis along
the incremental strip and interior tip angle 6, = 5"

It is found (Knott, 1985) that if this coefficients is cast in the form of EEC,
the two methods are equivalents (they differ by terms due to PO).



—
REDUCTION OF SINGULARITIES

In general, for arbitrary strip orientation, the singularities lie on a half-
cone along the strip with interior angle:

6, = 2arccos| (cosB'X+sin B'2) -]
To reduce the number of singular directions, Michaeli (1986) and
Ufimtsev (1991) considered the elementary strip in the direction of the
“grazing diffracted ray”. ;

(cosf'x+sinf'2)=0— 6, =0

The resulting incremental fields are singular only along the strip

[
direction, when the incident field is grazing.



PTD-EEC

e Michaeli derived a set EEC by asymptotic evaluation of the fringe wave
current radiation integral for the canonical wedge solution.

C2jY N2 sin (¢7/2)
= Fi e ¢
I E'k ST [V1—p—v2 cos (¢'/2)]

+Hi 2% :
"k sin B cos ¢’ +p (H A )
alf-Plane

* [cot B cos ' +cot B cos ¢

++2 cos (¢ /2)u cot B8’ —cot B cos @)1 —pu)~17,

gy gy 2 sin 0 1 _sinfsin 'cos¢+ cos B(cos ' cos )
N "k sin @ sin 8 cos ' +u /u_ Sinzﬁ'
_ [l_u’i cos (-i-'fz}]
Vi-y

e It exhibits a non-reciprocal behavior w.r.t. the aspects of incidence and
observation.



PTD-EEW

e Ufimtsev (1991) derived a set PTD incremental diffraction coefficients
based on the concept of Elementary Edge Wave.

e EEWSs are the waves scattered “...by the vicinity of an infinitesimal
element of a curved edge.”

e They are calculated as the spherical edge waves radiated by the
nonuniform currents flowing along the elementary strips
e High-frequency asymptotics are provided in the form:
e W
r

F2(P) = Zi D,(Q"F)
/4

e It exhibits a non-reciprocal behavior w.r.t. the aspects of incidence and
observation.



OTHER CONTRIBUTIONS

Shore and Yaghjian (1989) developed a simple substitution method for
obtaining ILDC’s directly from the 2-D scattered far fields of PEC
scatterer.

It allows to obtain the ILDCs without any integration, or differentiation or
specific knowledge of the currents.

Ando (1991) introduced a set of GTD equivalent edge currents in order
to completely eliminates the false singularities, in which the orientation
of the strip depends on the observation aspects.

ILDC'’s for aperture (Michaeli 1995), strips and slits (Yaghjian 1997) as
well as for cylindrical scatterer (Yaghjian 2001) have also been
proposed.



B
INCREMENTAL THEORY OF DIFFRACTION

e Explicit ITD formulations have been obtained for:

» Pec local wedges.
» Pec local thin circular cylinders.
» Double local edges

e Heuristic ITD formulations have been obtained for:

» Local edges in impedance planar surfaces.
» Local edges in thin coated and dielectric panels.



ITD LOCALIZATION PROCESS
e Diffracted field S

EY (P) = jdl
-

the incremental field can be deduced from an
appropriate local canonical problem

e Find a convenient representation for the
diffracted field of the canonical problem.

EX (P)= TFf (z")dz"

e Assume that at high-frequency ’ Fdiff (Q') =F§| (Z")‘ -
Z'=




I
A USEFUL REPRESENTATION

e For an object, with a uniform cylindrical canonical configuration along the
z-axis, by spectral synthesis:

G (r,r") = % G (p.p' k) ‘jk;(z‘zl)dk;

e Reciprocity suggests ’
S

e It is found that G may be
represented as the result of the
application of a linear operator

L.

j Uk, p)-U (K, p)e " dk;




I
INCREMENTAL FIELD CONTRIBUTION

G*(r,r") = L{% j U(k,,p)-U(k,, p')e“‘z(”')dk;}

By Fourier analysis, this spectral integral representation is interpreted as
the spatial convolution product of two functions:

G (r,r')= L{ T u(z'-zp)-u(z'-z", p')dz'}

—c0

This above spatial integral representation allows to directly define the
local incremental field contribution

(2", =uzp)-u@,p)=F*[UK,.p) | F U, p)]

Inverse Fourier transform ]




WEDGE-SHAPED CONFIGURATIONS

e This "FT-Convolution" process is S
directly applicable to the exact solution '
for the wedge

GSD (r,r') :% j GZD (,0,,0', k")e—jk;(Z—z')dk;

e Plane wave spectral representation

G*(p.p"k,) = %j j G (o, 00 0, 0)E NP g P g o g

e ITD diffracted field contribution

d i k2 e 1 i 1 i '
dF4(Q) = 227 j jc; (o, 0" 0, 0)U(=2, p)u(z', p)dexdex

oy 1 5%, - jk,pcosa K, z' 41"
u(z,p)—g:[okpe el dk



ASYMPTOTIC ANALYSIS (1)

e Spectral representation (EM case)

dF4(Q) = j j j j G[(a— '), ¢, ¢ MT @O @05 g gin ' dgde' dard o'

Cc,C, C,C,
f(",6",8")=dnp" sn6" cosa’ +cos ¥ cos6” = cosy!

e The desired stationary phase condition COS7/(') =1 is achieved at

1-cosfcosfs . 1—cos@'cosp!
== COSor =— :
sngdsnp sng'snf’

COSx

e Two more condition are required



B
ASYMPTOTIC ANALYSIS (I1)

e In the asymptotic analysis, the structure of the spectrum (spectral synthesis)
requires.

v=(a—-o") independent of 0,6’

e This is achieve d by ¢ = @'( analytic continuation of the diffraction cone).

e Thevalue of v=(a—-«"') at the stationary point is:

COS(Ot—a') =1_COS:BCOS,B' (Rubinowicz)
sngsng'
s
\

e Also

sin“@=snfBsin ' '




ITD SOLUTION FOR WEDGE PROBLEM

drON — F,[? _ De(v’¢1¢') 0 _E,B'(Q') e—jkr
F Q)= {Fg} _{ 0 D, (v, ¢,¢')]E¢. (Q')} .

D, ,(v.¢,¢) =D,[v,®](—+)D,[v,®'] E
D [0,®"]=d [v,®"]+d [v,-D"] '

ool “F
1 n

dn[U’ xl= on B
os o "

_ _ 1-cosfcospf! N ,
e ITD stationary phase point COSv = O =¢p—¢

snfg sinf'

e explicitly satisfies reciprocity

e Wwell-behaved at any aspect, including observation points lying on the
axis of the local canonical wedge.



ITD vs. UTD

When a stationary phase condition has been well established, the
integration of ITD incremental fields smoothly blends into the field
predicted by the UTD.

0

|
.0 1% 5=(x,y,2)

0 30 60 90 120 150 180 210 240 270 300
¢ (degrees)



ITD vs. MOM, UTD

e Far-zone pattern of a circular disc

0 10 20 30 40 50 60 70 80 90
O (degrees)



PTD vs. MOM, UTD

e Far-zone pattern of a circular disc
07

-5 |

-1o-ﬁ

Ey| (dB)

0 10 20 30 40 50 60 70 80 90
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TWO ALTERNATIVE APPROACHES

e The GO ray field is well-behaved within its domain of existence, the total

field is
[F@d

E =E'+E®-E* ~E®

e The GO ray field regime has not been well established or when an
augmentation of the PO field is desired

E=FE +ED°+MFd"°(Q')]d|

EfW NEptd :Egtd _Eé)(j)

e It is more convenient from numerical point of view

e Note: the fringe contributions are different from those of PTD, only the
terminology is the same



ITD FRINGE FORMULATION (1)

E°=E™+ L F'(Q)d
e Well-behaved at any aspect

e Tends to remedy the typical non-
reciprocity of PO.

e Alocalized incremental, fringe field contribution is obtained as T
f i f I d I i

e The incremental PO edge-diffracted field F5’(Q’) is obtained by applying
the ITD localization process to a local canonical problem with PO currents.



PO EDGE-DIFFRACTED FIELD

e The PO -edge-diffracted field is obtained by integration of the
iIncremental PO end-point contributions

EZ = [E7(Q)d

e They are found by applying the ITD localization process to the local
canonical problem of a plane half-lit and half-shadowed



INCREMENTAL PO EDGE-DIFFRACTED FIELD

prAN _| B

¢

i {fo(vw') Dﬁ"(v@ﬁ'ﬂrﬂ-@)}ew
E, Q)

0 D2 (v,¢.¢)

DY (U;4,¢) =di[0, @ ]-d [0, 7] D' =gp—¢'
DR (v:¢,¢) = ci[v, @] +ch[v, @]
D (v¢,¢) = 0S8

dl[v,Q]:E Sng2

2 COSv+ Cos(2

cosf = Yn(z+2)y/1-snBsin '

1-cosfcosf'
snf sinf’

ITD stationary phase point COSU =



ITD FRINGE FORMULATION FOR A LOCAL HALF-PLANE

FfHDlz(v,¢,¢'> DMvﬁﬁ')},{%-(Q')}ei“

B
F, 0  DLwe¢)||EQ)|2ar

F, (Q)= {

Dy (v:4,4)=0d; [0,®7]-d; [v,®"] O =g—g
D (;4,0) =d) [0, ]+d] [0,®"]
Dy, (v; ¢,¢) =—cos6

1 cos(€Y/2)

f _
G [0l = 2 cos(v/2) +sin(€/2)

cosd = sgn(z+z)\/1-snBsn B’




FRINGE ITD vs. PTD

e ITD fringe augmentation tends to remedy the typical non-reciprocity of
current based methods

PO,
POz
-10 — PO+fringe v
J?
? a=>sn
-20
)
I
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-40
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INCREMENTAL THEORY OF DIFFRACTION

Circular Cylinders



INCREMENTAL SCATTERED FIELD CONTRIBUTION

e Total field (scalar formulation)

¥ (P) =¥ (P)+¥*(P)

e Scattered field

¥ (P)=[w(Q)d

e The incremental field may be deduced from an appropriate local

canonical problem tangent at Q,. To this purpose, we need to find the
convenient field representation for the local canonical problem

v (P)= [ y.()dz

e Then, at high-frequency, it is assumed that

v(Q)=v.(2)|_,



LOCAL CANONICAL PROBLEM

e Canonical solution (spectral synthes

Wi(r,r") = __8715j e "I (r 1)

where ¢*" (k,a) =1




THE APPROPRIATE SPECTRUM FUNCTIONS (1)

e Soft boundary conditions

3068 HO (k)

2¢ct(k,a) =2 B = Y =1+o°(k,a)o’(k a)
’ HO(Ka) ~ HP(Ka) p ’
H® (K a)
e " _ n 0
o) = H? (k)|
n \%p
HOK a) |
for k real n X077 _ gl#n(6) e _ aith(k,)
p H® (k a) o,(k,a)=e

e Thus, the typical n-th term in the integrand of the exact solution is

eh 7 1" _1 e(r" e[ 2) /1" 2) (L" 7
Gy (p,p' k) =2 [ 1+ or (k@) on (k@) | HP (K, p) HR? (K, )



THE APPROPRIATE SPECTRUNM EUNCTIONS (1)

e This leads to the useful representation

| 1 , , T
G.(p £ k) =5GP (P, K,) + G (p, 'K, )

where

G (p, 0" k,) =HZ (k,p) HZ (k,p")
GP(p.p' k)= or(k,a) H? (k,p) || on(k;a) HP (k,0) |

os(k,a) =™ (k, real)



INCREMENTAL CONTRIBUTION

e Using it in the ITD-FT convolution
process leads to

v.(Q) =¥ (Q)+¥,”(Q)

e byinverse FT

() —

W, j U®(k,p) UD (K p)e = D dk,dk;

s dll

1 1
Ur(]i) k(’) Yy — ) Hr(12) k(’) ) ; i :{ }
(k,’0"’) {Gs(k/g)a)} (k,’p"") (i) 5

(Reciprocity)

with



ELECTROMAGNETIC CASE

e In the electromagnetic case for z- .
directed dipole illumination {M}:-}‘
observation )

yeEh . EM Vector Potentials

(E,.¢H,) =(k2—k22)l}1(e,h)

Thus, (d E’,Jd Hf)n is obtained after replacing in ¥

UK p) oy KUK )




HIGH-EREQUENCY EXPRESSIONS ()

e In order to find tractable expressions for ¥\’ first we

use Im{n} | |

Cn
Hr(12)( ,0)— J‘e ko pOSa - i = In7/2, 1 l
|
_ 0 . In Re{n}
e Next, collecting terms of the product of the two A
spectrum functions yields the four fold spectral
integral representation for each (dE;,{dH;}) as

[ ] ]o"ka)os(ka)e e g @ar@algn? gsin® ¢ do’ dard6’ de

Ce Ce’ CO! CO/

e Inthe spherical spectral domain K’ =kcos§” , C, =(=jeo, 7+ jeo)
r@0,a")=r" (sin B sin6” cosa” (+1-) cos cosH('))

e Standard ITD form.



HIGH-FREQUENCY EXPRESSIONS (II)

e The incremental electromagnetic scattered field is,

e—jkr’ e—jkr
r’ r

(d E§,§de)n = [e‘j“” el"s e (B, B, a)] singsinf’

3 (kayfsin Bsin §')
H® (kayfsin Bsin B

" (B, B a)=

e ITD stationary point

9-g - COS(O(+0(’)=1_COS'BCOS'B S

singsinf’
Sinzezs.nﬂsinﬂ’ Y — cost 1_COSﬂCOSﬂ

> singsin 3’

e well-behaved at any incidence and observation aspects



THE DYADIC SCATTERING COEEEICIENT

dE;(P) :(pes(ﬁ’ﬁ”¢’¢la) 0 ] E,Ib" e—jkr
d&, (P) 0 2y (B.5.9.9'a) )| E,

Din(BB &) =4] Y e e e ¢t (8, 5, a)

N=—oc0

J{” (kaysnBsin ')
H (X ")(ka\/sin,Bsin,B’)

" (BB a) =

well-behaved at any incidence and observation aspect, including #=0 =0

The expected transitional behavior of the field is reconstructed by numerical
Integration of the incremental contributions along the curved axis of the

actual cylindrical configuration.



NUMERICAL RESULTS

e Results from simulations are compared with a MoM solution (Feko™)

e Straight uniform cylinder — azimuthal scan
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NUMERICAL RESULTS

e Results from simulations are compared with a MoM solution (Feko™)

e Straight tapered cylinder — azimuthal scan
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NUMERICAL RESULTS

e Results from simulations are compared with a MoM solution (Feko™)

e Circular torus — elevation scan
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INCREMENTAL THEORY OF DIFFRACTION

Double Edge Diffraction



ITD FORMULATION FOR DOUBLE EDGE DIFFRACTION

Ezr (P)




ITD FORMULATION FOR DOUBLE EDGE DIFFRACTION

Ezr (P)

E,(Q)=E{(Q)=] F'(Q.Q)d,



ITD FORMULATION FOR DOUBLE EDGE DIFFRACTION
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ITD FORMULATION FOR DOUBLE EDGE DIFFRACTION




ITD FORMULATION FOR DOUBLE EDGE DIFFRACTION
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