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HF SCATTERING FROM LARGE OBJECTSHF SCATTERING FROM LARGE OBJECTS

design and analysis of antennas (e.g., reflectors)

 An efficient and accurate description of scattering phenomena at high 
frequency is of interests in many applications.

Rx

prediction of Radar Cross Section

propagation in complex environments (e.g., urban propagation)

antenna installation and inter-antenna coupling (e.g., on ships, aircrafts, 
space platforms…)



HF EDGE DIFFRACTION TECHNIQUESHF EDGE DIFFRACTION TECHNIQUES
 The most important theory that has dominated this scenario in past 

few decades is:

Geometrical Theory of Diffraction (GTD) in its Geometrical Theory of Diffraction (GTD) in its 
Uniform version (UTD, UAT)Uniform version (UTD, UAT)

 Both UTD and PTD are ray-optical theories: at high frequency, the 
scattering from a complex object may be obtained as a superposition 
of rays emanating from “isolated” flash points.

* P. Ya Ufimtsev “Method of edge waves in the physical theory of diffraction” Soviet Radio Publication House, 
1962. English Version: Air Force Foreign Technology Division, FTD-HC-23-259-71, Sept. 1971 (normal 
incidence).

Physical Theory of Diffraction (PTD*) in its original Physical Theory of Diffraction (PTD*) in its original 
versionversion

 Other important theory is:



GEOMETRICAL THEORY OF DIFFRACTIONGEOMETRICAL THEORY OF DIFFRACTION
 The exact field is the sum of a geometrical optics field (GO) and a  

diffracted field.

 The space surrounding the 
object is divided into regions 
separated by the reflection and 
shadow boundaries.

go diff= +E E E
 The GO field accounts for 

direct, and reflected ray-fields. 

 The diffracted field is the contribution which must be added to the GO 
to obtain the exact field.

 The GTD field provides an 
asymptotic approximation of the 
diffracted field.

diff gtdE E∼

RSB

ISB



PHYSICAL THEORY OF DIFFRACTIONPHYSICAL THEORY OF DIFFRACTION

 The scattered field is the sum of a physical optics field (PO) and a  
fringe wave field.

i po fw= + +E E E E
 The PO field arises from the 

induced surface currents on the 
object      . poJ

 The FW field arises from the 
non uniform surface currents on 
the objects     .nuJ

poJ nuJ

 Ufimtsev’s basic approach: 

“First, we will investigate the rigorous solution of this problem
(canonical). Then we will find its solution in the physical optics 
approach. The difference of these solutions determines the field created 
by the non uniform part of the current (fringe wave current).”



PHYSICAL THEORY OF DIFFRACTIONPHYSICAL THEORY OF DIFFRACTION

 The NU currents must be added to the PO currents to obtain the total 
currents, that radiates the scattered field.  

po nu= +J J J

poJ fwJ

 The PTD field provides an asymptotic approximation of the fringe wave 
field.

fw ptdE E∼

 One major advantage of the PO 
approach is that both the incident and 
the PO fields are continuous across 
the RSB and ISB. As a consequence, 
also the FW field and its asymptotic 
approximation (PTD field) are  
continuous across the same SB.



GTD VERSUS PTDGTD VERSUS PTD

 The PO surface contribution is the leading term of the asymptotic 
evaluation of the PO surface radiation integral for k → ∞.

 As a consequence, the sum of the fringe wave and the PO diffracted 
field is equal to the diffracted field.

 The PO field is divided into a PO surface contribution     and a PO 
diffracted field       .

po
sE

po
dE

po po po
s d= +E E E

poJ

po r
s =E E

0po
s =E

po i
s = −E E

po fw diff
d + =E E E fw diff po

d= −E E E



GTD VERSUS PTDGTD VERSUS PTD

 The PO edge-diffracted contribution is the leading term of the 
asymptotic evaluation of the PO radiation integral for k → ∞.

 The difference between the GTD field and the PO edge-diffracted field 
is the PTD field.

 The PO diffracted field is asymptotically approximated by the PO edge-
diffracted contribution        .po

edE
po po
d edE E∼

ptd gtd po
ed= −E E Efw diff po

d= −E E E

 At high frequency, GO and PO 
predictions may be augmented 
by GTD and PTD field 
respectively. 

go gtd

i po ptd

⎧ +
⎨

+ +⎩

E E
E

E E E
∼



RAY METHODS AND CANONICAL PROBLEMSRAY METHODS AND CANONICAL PROBLEMS

 The locality principle is essential: when a radiating object is large in 
terms of a wavelength the scattering and diffraction is found to be a 
local phenomenon,i.e., it depends only on the nature of the boundary 
surface and the incident field in the immediate neighborhood of the 
“flash” points.

 Both GTD and PTD are ray-optical methods: upon an identification of 
stationary surface and edge points (ray tracing), the proper ray-field is 
associated to each ray.

 The actual scatterer is 
substituted by local canonical 
configurations at the points of 
reflection and diffraction.

P

Q' L

S

z



LIMITATIONSLIMITATIONS

 Observation point is located at a 
caustic: all points along the 
edge, or on a finite portion, are 
stationary. 

 Ray-Optical methods are not applicable when isolated stationary edge
points cannot be identifies.

 Observation points is located 
outside the cones of diffraction: 
no edge stationary points exists.

near field 
caustic

near field 
caustic

caustic at 
infinity

caustic at 
infinity

RCS of poligonal flat plate



INCREMENTAL THEORIES FOR EDGED BODIESINCREMENTAL THEORIES FOR EDGED BODIES

 The original idea is that an illuminating field undergoes a diffraction 
process at each incremental element of the edge  (Young, Maggi, 
Sommerfeld).

 The observed “field pattern” (ex: diffracted field) is thus caused by the 
interaction between the “superposition” of elementary contributions 
distributed along the actual edge, and the GO field.

 The mathematical formulation of 
this “idea” may be 
asymptotically expressed as a 
line integral along the edge 
contour.

( ) ( )diff diff
e

l

dl∫E r F r∼ scatterer

edge contour l

eβ

'
eβ

Q’ê

( , )i iE H
ˆ 's

ˆes P

r

r̂
x

y

z

êr

er

e e= −R r r



INCREMENTAL THEORIES FOR EDGED BODIESINCREMENTAL THEORIES FOR EDGED BODIES

 At high frequency, each incremental field contribution             is estimated 
from a local uniform, infinite, canonical configuration that more 
appropriately models the actual discontinuity.

Q' L

S

z

 The two prevailing techniques to derive incremental contributions are 
the Current based and the Field based methods.

( )diff
c eF r

( )diff
eF r

( ) ( )diff diff
e

l

dl∫E r F r∼



 Incremental fields contributions are deduce from the currents of local 
canonical problems.

 Incremental Length Diffraction Coefficients (ILDC): 

K. M. Mitzner, Northrop Corp., Tech. Rep., Apr. 1974
R. A Shore and A. D Yaghjian, IEEE AP, Jan. 1988.
A. D. Yaghjian...... 

 Equivalent Edge Currents (EEC):

A. Michaeli, IEEE AP, Mar. 1984
A. Michaeli, IEEE AP, July,1986.

 Equivalent Edge Wave (EEW):

D. I. Bouturin and P Ya. Ufimtsev,  Sov. Phys. Acoust. Jul.-Aug. 1986.
P. Ya. Ufimtsev, Electromagnetics, Apr.-June 1991.

CURRENT BASED METHODSCURRENT BASED METHODS



 Incremental fields contributions are deduce from the field of local 
canonical problems.

 Incremental Diffracted Field: 

A. Rubinowicz, Acta Phisica Polonica, 1965.

 Equivalent Current Method (ECM):

R. F. Millar, Proc. IEE , Mar. 1956.
C. E. Ryan and L. Peters, Jr., IEEE AP, May 1969.
E.F. Knott and T. B. A. Senior, IEEE AP, Sept.1973.

 Incremental Theory of Diffraction (ITD):

R. Tiberio, S. Maci, IEEE AP, May 1994. 
R. Tiberio, S. Maci, and A. Toccafondi IEEE AP, 1996-2004.

FIELD BASED METHODSFIELD BASED METHODS



EQUIVALENT CURRENT METHODEQUIVALENT CURRENT METHOD
 The incremental field              attributed to the edge element at re may be 

thought as generated by traveling-wave electric Ie and magnetic Me line 
current, located at re and directed along the edge tangent    .

( )diff
c eF r

ê

Q’ê

ˆ 's

ˆes

er

eM
eI

e

e

ˆ ˆ ˆ ˆ ˆ( ) [ ( ) ( ') ( ) ( ')]
4

jk
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c e e e e e e

jk es s e I Q s e M Qζ
π

−

= × × + ×
R

F r
R

e e= −R r r

 The constant propagation factor is              .'cos ek β

 It assumed that the value of Ie  and Me depend linearly on the incident 
electric and magnetic field.



EQUIVALENT CURRENT METHODEQUIVALENT CURRENT METHOD
 Each traveling-wave current radiates a conical wave
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 If             and               , the components of the GTD edge-diffracted field 
at P by a local canonical configuration at Q’, can be approximated as:
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EQUIVALENT CURRENT METHODEQUIVALENT CURRENT METHOD
 Comparing the above expressions outside the shadow boundary 

transition region:
/ 4

' '
'

/ 4
' '
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 The current are “equivalent” since it depends on the angles of incidence 
and observation at the point of diffraction.

 Unlike GTD, the fields radiated by EC remain valid even within the 
caustic regions of edge-diffracted rays.

 These currents are defined only for observation points lying on the Keller 
cone of half-angle      . '

eβ

 An heuristic extension to 
include points outside the Keller 
cone have been suggested 
(Knott and Senior).

/ 4
' '

'

/ 4
' '

'

ˆ8 [ ( ')]( ') ( , , , )
sin sin

ˆ8 [ ( ')]( ') ( , , , )
sin sin

j i

e s e e e e

e e

j i

e h e e e e

e e

e e QI Q D
k

e e QM Q D
k

π

π

π φ φ β β
ζ β β

ζ π φ φ β β
β β

−

−

⋅= −

⋅= −

E

H

�

�



EQUIVALENT EDGE CURRENTEQUIVALENT EDGE CURRENT
 The diffracted field by a local canonical configuration (pec) locally 

tangent at Q’ is (half-plane):

sr

s= −R r r

( )sJ r

z

x

y r
ˆ ˆ( ) [ ( )]

4
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jk
diff
c s

S

eP jk dSζ
π
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× ×∫∫
R

E R R J r
R

∼

total induced electric current density

 The surface radiation integral is 
approximated in far field as:
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incremental strip

Q’ ê

Q’

The incremental diffracted field associated to Q’ is 
the end-point contribution to the field generated by 
the surface current density on an infinite extended 
incremental strip, starting at that edge point.

cS



EQUIVALENT EDGE CURRENTEQUIVALENT EDGE CURRENT
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 It is found that the equivalent edge current are

 When the total current is applied, the above 
expressions provide an asymptotic 
approximation to the diffracted field.
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 When the FW (non uniform) surface current 
density is applied, the above expressions 
provide an asymptotic approximation to the 
PTD field.

 When the PO surface current density is 
applied, the above expressions provide an 
asymptotic approximation to the PO edge-
diffracted field.



 Originally the strip was chosen normal to the edge

 Michaeli (1984) derived a set of  
EEC for the wedge diffracted 
field.

 The crosspolar component vanish at stationary point            . 'β β=

 The incremental contributions are singular on a half-cone with tip at the 
edge, axis along the incremental strip and interior tip angle   . 'pθ β=

ˆ ˆu x=

z
Q’

'β

EQUIVALENT EDGE CURRENTEQUIVALENT EDGE CURRENT

1 1ˆ ˆ( ') ( ')
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i I i I
E H

i M
H

I Q e D Q e D
jk jk

M Q e D
jk
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⎡ ⎤ ⎡ ⎤= ⋅ + ⋅⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⋅⎣ ⎦

E H
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 Valid for arbitrary direction of observation. 



INCREMENTAL LEGTH DIFFRACTION COEFFICIENTSINCREMENTAL LEGTH DIFFRACTION COEFFICIENTS

 Mitzner (1984) first considered the fringe wave surface current density
along the strips normal to the edge. 

 He provided expressions in 
terms of Incremental Lenght
Diffraction Coefficients (ILDC). 

ˆ ˆu x=

z
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 The ILDC’s are singular on a half-cone with tip at the edge, axis along 
the incremental strip and interior tip angle           . 'pθ β=

 It is found (Knott, 1985) that if this coefficients is cast in the form of EEC, 
the two methods are equivalents (they differ by terms due to PO). 



REDUCTION OF SINGULARITIESREDUCTION OF SINGULARITIES
 In general, for arbitrary strip orientation, the singularities lie on a half-

cone along the strip with interior angle: 

[ ]ˆ ˆˆ2arccos (cos ' sin ' )p x z uθ β β= + ⋅

 To reduce the number of singular directions, Michaeli (1986) and 
Ufimtsev (1991) considered the elementary strip in the direction of the 
“grazing diffracted ray”.

ˆ ˆˆ(cos ' sin ' ) 0px z uβ β θ+ = → =

 The resulting incremental fields are singular only along the strip 
direction, when the incident field is grazing.

x

z

Q’

'β

'β
'β



PTDPTD--EECEEC

 Michaeli derived a set EEC by asymptotic evaluation of the fringe wave 
current radiation integral for the canonical wedge solution. 

x

z

Q
’

'β

'β
'β

 It exhibits a nonnon--reciprocalreciprocal behavior w.r.t. the aspects of incidence and 
observation.

(Half-Plane)

2

sin sin 'cos cos (cos ' cos )
sin '

β β φ β β βµ
β

+ −=



PTDPTD--EEWEEW
 Ufimtsev (1991) derived a set PTD incremental diffraction coefficients 

based on the concept of Elementary Edge Wave.

 EEWs are the waves scattered “…by the vicinity of an infinitesimal 
element of a curved edge.”

 They are calculated as the spherical edge waves radiated by the 
nonuniform currents flowing along the elementary strips   

 It exhibits a nonnon--reciprocalreciprocal behavior w.r.t. the aspects of incidence and 
observation.

 High-frequency asymptotics are provided in the form:

x
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OTHER CONTRIBUTIONSOTHER CONTRIBUTIONS

 Ando (1991) introduced a set of GTD equivalent edge currents in order 
to completely eliminates the false singularities, in which the orientation 
of the strip depends on the observation aspects.

 Shore and Yaghjian (1989) developed a simple substitution method for 
obtaining ILDC’s directly from the 2-D scattered far fields of PEC 
scatterer.

 It allows to obtain the ILDCs without any integration, or differentiation or 
specific knowledge of the currents. 

 ILDC’s for aperture (Michaeli 1995), strips and slits  (Yaghjian 1997) as 
well as for cylindrical scatterer (Yaghjian 2001) have also been 
proposed.



 Explicit ITD formulations have been obtained for:

INCREMENTAL THEORY OF DIFFRACTIONINCREMENTAL THEORY OF DIFFRACTION

Pec local wedges. 
Pec local thin circular cylinders.
Double local edges

 Heuristic ITD formulations have been obtained for:

Local edges in impedance planar surfaces. 
Local edges in thin coated and dielectric panels.



ITD LOCALIZATION PROCESSITD LOCALIZATION PROCESS
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S
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 Diffracted field

the incremental field can be deduced from an 
appropriate local canonical problem
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 Reciprocity suggests
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 For an object, with a uniform cylindrical canonical configuration along the 
z-axis, by spectral synthesis:

A USEFUL REPRESENTATIONA USEFUL REPRESENTATION

 It is found that G2D may be 
represented as the result of the 
application of a linear operator 
L[].



 By Fourier analysis, this spectral integral representation is interpreted as 
the spatial convolution product of two functions:
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 This above spatial integral representation allows to directly define the 
local incremental field contribution

Inverse Fourier transform

INCREMENTAL FIELD CONTRIBUTIONINCREMENTAL FIELD CONTRIBUTION
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nπ

 This "FT-Convolution" process is 
directly applicable to the exact solution 
for the wedge

 Plane wave spectral representation
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 ITD diffracted field contribution
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 Spectral representation (EM case)
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 The desired stationary phase condition                   is achieved at(')cos 1γ =

ASYMPTOTIC ANALYSIS (I)ASYMPTOTIC ANALYSIS (I)

 Two more condition are required



(Rubinowicz)

2sin sin sin 'θ β β=

 Also

ASYMPTOTIC ANALYSIS (II)ASYMPTOTIC ANALYSIS (II)
 In the asymptotic analysis, the structure of the spectrum (spectral synthesis) 

requires.
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 explicitly satisfies reciprocity

 well-behaved at any aspect, including observation points lying on the
axis of the local canonical wedge.
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ITD SOLUTION FOR WEDGE PROBLEMITD SOLUTION FOR WEDGE PROBLEM

 ITD stationary phase point
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ITD vs. UTDITD vs. UTD
 When a stationary phase condition has been well established, the

integration of  ITD incremental fields smoothly blends into the field 
predicted by the UTD.

UTDUTD

ITDITD



ITD vs. MOM, UTDITD vs. MOM, UTD
 Far-zone pattern of a circular disc



PTD vs. MOM, UTDPTD vs. MOM, UTD
 Far-zone pattern of a circular disc



 The GO ray field is well-behaved within its domain of existence, the total 
field is 

( ')ggo d

l
Q dl= + ∫E E F

( ') ( ')i po d po
dl

Q Q dl⎡ ⎤= + + −⎣ ⎦∫E E E F F

 The GO ray field regime has not been well established or when an
augmentation of the PO field is desired

TWO ALTERNATIVE APPROACHESTWO ALTERNATIVE APPROACHES

ggo i po po go
d= + −E Ε E E E∼ diff utdE E∼

 It is more convenient from numerical point of view

 Note: the fringe contributions are different from those of PTD, only the 
terminology is the same

fw ptd gtd po
ed= −E E E E∼



 Well-behaved at any aspect

 Tends to remedy the typical non-
reciprocity of PO.

ITD FRINGE FORMULATION (I)ITD FRINGE FORMULATION (I)

( ')s po f

l
Q dl= + ∫E E F

P

Q' l

S

z

( ') ( ') ( ') ( ')f f d po
c c edQ Q Q Q= −F F F F∼

 The incremental PO edge-diffracted field is obtained by applying 
the ITD localization process to a local canonical problem with PO currents.

( ')po
ed QF

 A localized incremental, fringe field contribution is obtained as



( ')po po
ed ed

l

Q dl= ∫E F

 The PO edge-diffracted field is obtained by integration of the 
incremental PO end-point contributions

 They are found by applying the ITD localization process to the local 
canonical problem of a plane half-lit and half-shadowed

( )po
sQF

( ')po
ed QF

PO EDGEPO EDGE--DIFFRACTED FIELDDIFFRACTED FIELD
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INCREMENTAL PO EDGEINCREMENTAL PO EDGE--DIFFRACTED FIELDDIFFRACTED FIELD
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−= ITD stationary phase point
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ITD FRINGE FORMULATION FOR A LOCAL HALFITD FRINGE FORMULATION FOR A LOCAL HALF--PLANEPLANE



FRINGE ITD vs. PTDFRINGE ITD vs. PTD

 ITD fringe augmentation tends to remedy the typical non-reciprocity of 
current based methods



INCREMENTAL THEORY OF DIFFRACTIONINCREMENTAL THEORY OF DIFFRACTION

Circular CylindersCircular Cylinders



INCREMENTAL SCATTERED FIELD CONTRIBUTIONINCREMENTAL SCATTERED FIELD CONTRIBUTION

( ) ( ) ( )t i sP P PΨ = Ψ + Ψ

 Scattered field

( ) ( )s
l

l

P Q dlψΨ = ∫

 The incremental field may be deduced from an appropriate local 
canonical problem tangent at Ql. To this purpose, we need to find the 
convenient field representation for the local canonical problem

( ) ( )c
s

cP z dzψ
∞

−∞

Ψ = ∫
 Then, at high-frequency, it is assumed that

0
( ) ( )l c z
Q zψ ψ

=
=

 Total field (scalar formulation)



LOCAL CANONICAL PROBLEMLOCAL CANONICAL PROBLEM

where
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nG kρρ ρ′

 Canonical solution (spectral synthesis)
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THE APPROPRIATE SPECTRUM FUNCTIONS (I)THE APPROPRIATE SPECTRUM FUNCTIONS (I)

 Soft boundary conditions

'' (1) ''
'' '' ''

(2) '' (2) ''
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2 ( ) 2 1 1 ( ) ( )
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 Thus, the typical n-th term in the integrand of the exact solution is

, '' '' '' (2) '' (2) ''1( , , ) 1 ( ) ( )  ( ) ( )
2

e h e e
n n n n nG k k a k a H k H kρ ρ ρ ρ ρρ ρ σ σ ρ ρ∗′ ′⎡ ⎤= +⎣ ⎦



THE APPROPRIATE SPECTRUM FUNCTIONS (II)THE APPROPRIATE SPECTRUM FUNCTIONS (II)

 This leads to the useful representation

(1) (2)1( , ', ) ( , , ) ( , , )  
2n n nG k G k G kρ ρ ρρ ρ ρ ρ ρ ρ′ ′⎡ ⎤= +⎣ ⎦
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INCREMENTAL CONTRIBUTIONINCREMENTAL CONTRIBUTION

 Using it in the ITD-FT convolution 
process leads to

(Reciprocity)

 by inverse FT

(1) (2)( ) ( ) ( )n l n l n lQ Q Qψ ψ ψ= +
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ELECTROMAGNETIC CASEELECTROMAGNETIC CASE

 In the electromagnetic case for z-
directed dipole illumination and 
observation

is obtained after replacing in( ),s s
z z n

d E d Hζ

( ) ( ) ( )( )i
nU kρ ρ′ ′

( )i
nψ

by ( ) ( ) ( ) ( )( )i
nk U kρ ρ ρ′ ′ ′

( , )e hΨ EM Vector Potentials

( ) ( )2 2 ( , ), e h
z z zE H k kζ = − Ψ

Thus, 



HIGHHIGH--FREQUENCY EXPRESSIONS (I)FREQUENCY EXPRESSIONS (I)

 In order to find tractable expressions for         first we 
use

 Next, collecting terms of the product of the two 
spectrum functions yields the four fold spectral 
integral representation for each                         as( ),s s

z z n
d E d Hζ

( )i
nψ
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 In the spherical spectral domain ( ) ( )cos , ( , )zk k C j jηθ π′ ′= ≡ − ∞ + ∞

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , ) sin sin cos ( / ) cos cosr rθ α β θ α β θ′ ′ ′ ′ ′ ′ ′ ′ ′= + −

 Standard ITD form.



2 1 1 cos cossin sin sin ; cos
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β βθ β β γ
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′

HIGHHIGH--FREQUENCY EXPRESSIONS (II)FREQUENCY EXPRESSIONS (II)

 ITD stationary point

1 cos cos; cos( )
sin sin

β βθ θ α α
β β

′−′ ′= + =
′

 The incremental electromagnetic scattered field is,
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 well-behaved at any incidence and observation aspects
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THE DYADIC SCATTERING COEFFICIENTTHE DYADIC SCATTERING COEFFICIENT
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 well-behaved at any incidence and observation aspect, including 0β = 0β′ =

 The expected transitional behavior of the field is reconstructed by numerical 
integration of the incremental contributions along the curved axis of the 
actual cylindrical configuration.



NUMERICAL RESULTSNUMERICAL RESULTS

 Results from simulations are compared with a MoM solution (Feko™) 
 Straight uniform cylinder – azimuthal scan

x’ = 6 λ
r = 8 λ

L = 20 λ

ka = π /5

ka = 2π /5

ka = 3π /5

CPU timesCPU times

ITDITD

MoMMoM

ka = π /5

1.1 s (nav = 3.6)

15.3 s

ka = 2π /5

2.3 s (nav = 3.8)

148.4 s

ka = 3π /5

4 s (nav = 4)

279.8 s



NUMERICAL RESULTSNUMERICAL RESULTS

 Results from simulations are compared with a MoM solution (Feko™) 

x’ = 8 λ
r = 10 λ

L = 20 λ

 Straight tapered cylinder – azimuthal scan

amin = 0.05 λ

amax = 0.4 λ

CPU timesCPU times

ITDITD

MoMMoM

1.2 s (nav = 5.5)

17 min 6 s



NUMERICAL RESULTSNUMERICAL RESULTS

 Results from simulations are compared with a MoM solution (Feko™) 

 Circular torus – elevation scan

z’ = 5 λ
r = 15 λ

a = 0.1 λ
RT = 8 λ

causticscaustics

CPU timesCPU times

ITDITD

MoMMoM

2.2 s (nav = 3.7)

2 min 25 s



INCREMENTAL THEORY OF DIFFRACTIONINCREMENTAL THEORY OF DIFFRACTION

Double Edge DiffractionDouble Edge Diffraction



ITD FORMULATION FOR DOUBLE EDGE DIFFRACTIONITD FORMULATION FOR DOUBLE EDGE DIFFRACTION
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dd PE



( )21
dd PE

( ) ( ) ( )
1

2 2 1 2 1 2 1 1,i d d

l
Q Q Q Q dl= = ∫E E F

ITD FORMULATION FOR DOUBLE EDGE DIFFRACTIONITD FORMULATION FOR DOUBLE EDGE DIFFRACTION
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ITD FORMULATION FOR DOUBLE EDGE DIFFRACTIONITD FORMULATION FOR DOUBLE EDGE DIFFRACTION
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ITD FORMULATION FOR DOUBLE EDGE DIFFRACTIONITD FORMULATION FOR DOUBLE EDGE DIFFRACTION
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