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INFINITE ARRAY GF: ELEMENT BY ELEMENT SUMMATIONINFINITE ARRAY GF: ELEMENT BY ELEMENT SUMMATION

' Slowly convergent representation
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GREENGREEN’’S FUNCTION FOR A PHASED ARRAY OF DIPOLESS FUNCTION FOR A PHASED ARRAY OF DIPOLES

( ; , )g P x y Green’s function for the single dipole

Example: in free space
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INFINITE ARRAY GF: FLOQUET WAVE EXPANSIONINFINITE ARRAY GF: FLOQUET WAVE EXPANSION

Poisson summation formula
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GREENGREEN’’S FUNCTION FOR A PHASED ARRAY OF DIPOLESS FUNCTION FOR A PHASED ARRAY OF DIPOLES
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¾PFW: Propagating Floquet waves
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¾EFW: Evanescent Floquet waves
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GREENGREEN’’S FUNCTION FOR A PHASED ARRAY OF DIPOLESS FUNCTION FOR A PHASED ARRAY OF DIPOLES



FWk11

TThehe periodicityperiodicity isis brokenbroken ⇒⇒ the FW the FW basisbasis isis notnot complete complete 

Radiation integral on the truncated domain

Stationary phase contribution

Edge-end-point contribution

PP

Vertex end-point contribution

TRUNCATEDTRUNCATED ARRAY GFARRAY GF

Truncated Poisson summation formula
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GREENGREEN’’S FUNCTION FOR A PHASED ARRAY OF DIPOLESS FUNCTION FOR A PHASED ARRAY OF DIPOLES

Only the propagating and the first 
evanescent FWs describes the field

accurately in most the cases
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Array in free space: equivalence with far 
field scattering by a metallic plate

Generalization to observation point
at finite distance: UTD

GREENGREEN’’S FUNCTION FOR A PHASED ARRAY OF DIPOLESS FUNCTION FOR A PHASED ARRAY OF DIPOLES

In the far zone, the radiation integral of 
each propagating FW

produces a beam in the specular direction



MOTIVATION: MOTIVATION: INTERACTION WITH THE ENVIRONMENTINTERACTION WITH THE ENVIRONMENT

In the far field of the single element
the momentum of each subcell can be replaced by the element factor

Generalization of the 
LAW

ARRAY FACTOR 
X

ELEMENT FACTOR
in the FRESNEL zone

ARRAY Green’s function
x

Element pattern

P

The radiation in the Fresnel zone from an array of arbitrary elements can be 
obtained by weighting each contribution by the proper element factor.



Rx

Element by element ray-tracing

Rx

Global TFW ray-tracing

MOTIVATION: MOTIVATION: INTERACTION WITH THE ENVIRONMENTINTERACTION WITH THE ENVIRONMENT

The radiation from the array can be collectively described in terms of a few 
rays associated to the FW of the infinite structure

efficient representation of the interaction with a complex environment



RECTANGULAR ARRAY OF DIPOLES IN FREE SPACERECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

FW-induced 
vertex

diffracted 
field 

Floquet wave (FW) P

FW-induced 
edge diffracted 
field 
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RECTANGULAR ARRAY OF DIPOLES IN FREE SPACERECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

CANONICAL PROBLEM FOR EDGE DIFFRACTION: SEMICANONICAL PROBLEM FOR EDGE DIFFRACTION: SEMI--INFINITE ARRAYINFINITE ARRAY
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RECTANGULAR ARRAY OF DIPOLES IN FREE SPACERECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

CANONICAL PROBLEM FOR EDGE DIFFRACTION: SEMICANONICAL PROBLEM FOR EDGE DIFFRACTION: SEMI--INFINITE ARRAYINFINITE ARRAY
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RECTANGULAR ARRAY OF DIPOLES IN FREE SPACERECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

CANONICAL PROBLEM FOR VERTEX DIFFRACTION: SECTORAL ARRAYCANONICAL PROBLEM FOR VERTEX DIFFRACTION: SECTORAL ARRAY
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ARRAY OF DIPOLES IN STRATIFIED DIELECTRIC MEDIAARRAY OF DIPOLES IN STRATIFIED DIELECTRIC MEDIA

GROUNDED SLABGROUNDED SLAB

The single element 
Green’s function is 
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ARRAY OF DIPOLES IN STRATIFIED DIELECTRIC MEDIAARRAY OF DIPOLES IN STRATIFIED DIELECTRIC MEDIA

Vertex excited SW

Edge excited SW

∑ ∑∑∑∑ ++++≈
qp qp

SWv
pq

SWe
pq

qp

v
pq

qp

e
pq

qp

FW
pq

, ,

,,

,,,
EEEEEE

rkE ⋅−≈
SW
pqjSWe

pq
SWe

pq eU ,, rjkSWv
pq

SW

e
r

−≈
1,E



Irregular contoursPolygonal contours

However, as the contour of the array becomes irregular, the number of flash 
points increases and the contour may no longer be well defined

?

ARBITRARILY CONTOURED ARRAYSARBITRARILY CONTOURED ARRAYS

The description in terms of truncated FW has proven to be very efficient for 
rectangular arrays.
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LINE BY LINE STRATEGY FORLINE BY LINE STRATEGY FOR ARBITRARILY CONTOURED ARRAYSARBITRARILY CONTOURED ARRAYS



The radiation from a uniform finite linear array can be represented in terms of 
truncated cylindrical FWs, augmented by the relevant end-point diffracted fields
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A uniform planar array radiation can be obtained as a one-dimensional 
superposition of the dominant high-frequency contributions from the constituting 
finite phased linear arrays

Finite, phased linear array

z
cosjk ze γ− cos pjk ze γ−

LINE BY LINE STRATEGY FORLINE BY LINE STRATEGY FOR ARBITRARILY CONTOURED ARRAYSARBITRARILY CONTOURED ARRAYS



By applying the Poisson summation formula the array can be seen as the 
superimposition of suitably phased and tapered continuous lines:

with                             infinite linear array FW wavenumbers
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LINE BY LINE STRATEGY FORLINE BY LINE STRATEGY FOR TAPERED ARRAYSTAPERED ARRAYS



It can be shown that the lower-order terms of the high-frequency representation 
of the potential are:

cos( ) pjk zf z e γ−

P

uniform contribution

truncated FW

P

spherical diffracted wave

THE CANONICAL PROBLEM OF THE TAPERED LINETHE CANONICAL PROBLEM OF THE TAPERED LINE



This approach provides excellent results for uniform arrays, both in the near and 
in the far field regions. Accurate results are obtained also for the field radiated 
in the near zone by a weakly tapered array. Accuracy, however, decreases when 
the observation point moves to the far zone.

Uniform line P
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Tapered line
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UNIFORM VS. TAPERED LINEUNIFORM VS. TAPERED LINE



This phenomenon can be clearly explained by observing the behavior of the 
argument of the radiation integral for different positions of the observer .

The observer moves in the near field zone.

Integrand function

P
P

P

UNIFORM VS. TAPERED LINEUNIFORM VS. TAPERED LINE



The observer moves from the near to the far field zone.

Integrand function
P
P
P

UNIFORM VS. TAPERED LINEUNIFORM VS. TAPERED LINE

The strong localization of radiation contributions is no longer valid for far field 
observation!



• Nepa, Pathak, Civi, and Chou, 1999
• Cicchetti,Faraone,and Balzano, 2003

A more efficient representation of the radiated field is obtained by linking
the coefficients of the expansion to the characteristics of the actual
tapering associated with the dominant asymptotic contributions.

Specifically, the approximate tapering function is defined to match:
• the value and the derivative of f( z) at the two end-points 
• the value and the derivative of f( z) at the stationary phase point (if it lies

on the line)
• the area subtended by f( z)

Approximating the actual current distribution through a suitable
superimposition of uniform excitations allows to go from the near to the 
far field region. 
This has been done in the past by resorting to DFT or to spatial Fourier
Transforms.

HOW TO OVERCOME THE IMPAIRMENT?HOW TO OVERCOME THE IMPAIRMENT?



To approximate the current distribution the following set of basis functions is 
employed, which can be immediately rewritten in terms of equiamplitude
linearly phased excitations. 
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The expression of the expansion coefficients is obtained in closed form by 
solving a linear system of equations. 

APPROXIMATION OF THE LINE TAPERINGAPPROXIMATION OF THE LINE TAPERING



The conditions relevant to the stationary phase point imply a dependence of 
the equivalent current on the position of the observation point, however they
are only required when the stationary phase point lies on the finite line.

APPROXIMATION OF THE LINE TAPERINGAPPROXIMATION OF THE LINE TAPERING

Actual current distribution
Approximated current distribution
Stationary phase point



Actual integrand

Approximated integrand

Stationary phase point

Although the approximated tapering function does not equate the actual 
current distribution on the whole line, there is a good agreement between the 
relevant radiation integrals:

APPROXIMATION OF THE INTEGRAND FUNCTIONAPPROXIMATION OF THE INTEGRAND FUNCTION



Actual integrand

Approximated integrand

Stationary phase point

Thanks to the condition on the subtended area, the agreement between the 
relevant radiation integrals is preserved when the observation point moves to 
the far field region

APPROXIMATION OF THE INTEGRAND FUNCTIONAPPROXIMATION OF THE INTEGRAND FUNCTION



Numerical results confirm that the proposed approach yields more accurate 
results when the observation point approaches the far field region:

P

θ

Asymptotic

Element by element
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A COMPARISON OF THE TWO APPROACHESA COMPARISON OF THE TWO APPROACHES



∑p tapered
continuous lines

Tapered linear
array

Poisson
Ë m uniform

continuous lines

Propagating modes

Evanescent modes

Coefficients are chosen to match:
• the value and the first derivative of f at 

the end-points and at the saddle point
• the area subtended by f to the line

Coefficients are chosen to match:
• the value and the first derivative of f at 

the end-points

LINEAR ARRAY SYNTHESISLINEAR ARRAY SYNTHESIS



P

• The radiation from the planar array 
is reconstructed by numerical 
summation of the linear arrays 
contributions. 

• These contributions are uniformly 
asymptotically evaluated as shown 
before.

• Finally, the field radiated by the 
planar array is represented as the sum 
of diffracted fields from the actual rim 
plus (when needed) a limited number 
of conical waves arising from points 
located on the array surface.

P

z

PLANAR ARRAY SYNTHESISPLANAR ARRAY SYNTHESIS



Array of  2160 elementary magnetic dipoles
dx=1.6 z

dy= z

NUMERICAL RESULTS: ARRAY CONFIGURATIONNUMERICAL RESULTS: ARRAY CONFIGURATION



Bearing angles: �0=0°, M0=0°
Observation plane: Mobs=0°
Taylor distribution with SLL = 20dB and n = 3
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NUMERICAL RESULTS: FREE SPACE RADIATIONNUMERICAL RESULTS: FREE SPACE RADIATION
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Bearing angles: �0= 10°, M0=0°
Observation: Mobs=0°, Robs=10000 z
Gaussian distribution with � = 14 z
24 z x 17 z PEC plate

Line by line + DFT
FEKO (Element by element + PO)
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NUMERICAL RESULTS: INTERACTION WITH THE ENVIRONMENTNUMERICAL RESULTS: INTERACTION WITH THE ENVIRONMENT


