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Truncated FW diffraction and
Interaction with complex
platforms




GREEN'S FUNCTION FOR A PHASED ARRAY OF DIPOLES

* INFINITE ARRAY GF: ELEMENT BY ELEMENT SUMMATION

. y AP AAAAAAAAS
AP AAAAAAAAS
AP AAAAAS

o'

AP)=Y Y (P, e, )t

N=—00 M=——o0

Example: in free space
—IRR(xY)

g(P; X y) Green’s function for the single dipole g(P:, y):4
7R(X.Y)

% Slowly convergent representation



GREEN'S FUNCTION FOR A PHASED ARRAY OF DIPOLES

o INFINITE ARRAY GF: FLOQUET WAVE EXPANSION

400 400

AP) =SS g(Pnd, md, ) g oo Z 3 Gk e

N=-o00 M=00 X y (=00 p==o0

T

Mwa=i%TTG@F“%kWy GMe™ = [ [ (P xy)e by

Z f(nd)=— Zj f(z)e - d ‘oz Poisson summation formula

P=—00_

Kng =KoR+K J+kp? < Kg=ko+——

p,q=0,+1,%2,...
prKm%WZ




1 +00

kFW

y 7 AP)=—=D 2 Glkyg e ™

| i dxdy (=— p=—x©

»EFW: Evanescent Floguet waves
2 2
Ko €C, Kopq >K

» PFW: Propagating Floquet waves

Kpg >0, Koo <k’



GREEN'S FUNCTION FOR A PHASED ARRAY OF DIPOLES

e TRUNCATED ARRAY GF
The periodicity is broken = the FW basis is not complete

2
SEa

Z f(nd)=— f(O) +— Z _[ f(z)e ¢ dz Truncated Poisson summation formula
d= 0 1
Radiation integral on the truncated domain
Stationary phase contribution
Edge-end-point contribution

Vertex end-point contribution

Only the propagating and the first
evanescent FWs describes the field
accurately in most the cases



GREEN'S FUNCTION FOR A PHASED ARRAY OF DIPOLES

Array in free space: equivalence with far
field scattering by a metallic plate

¥
¥
¥ ¥

y

¥ ¥
AR In the far zone, the radiation integral of
Y each propagating FW
YA KA AAAANY produces a beam in the specular direction

YAV AAAAAAAYN

Generalization to observation point
at finite distance: UTD




MOTIVATION: INTERACTION WITH THE ENVIRONMENT

In the far field of the single element
the momentum of each subcell can be replaced by the element factor

o ARRAY Green’s function
X
Element pattern

,’\.‘;' ,,.!9@, Generalization of the

/J“\ ))][( ))][ LAW

e e =) e

e T 2O ARRAY FACTOR
=) o) ) e X

e b o o ELEMENT EACTOR

in the FRESNEL zone

The radiation in the Fresnel zone from an array of arbitrary elements can be
obtained by weighting each contribution by the proper element factor.



MOTIVATION: INTERACTION WITH THE ENVIRONMENT

The radiation from the array can be collectively described in terms of a few
rays assoclated to the FW of the infinite structure

efficient representation of the interaction with a complex environment

Element by element ray-tracing /

. ol

Tx RX

Global TFW ray-tracing



RECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

Floquet wave (FW) P
o T , FW-induced
- T = >~ . vertex
O % e 7 == diffracted
T S T P | b field
FW-induced
edge diffracted
field

+0((kr) ?)

—jk&r
E%, ~U¢ e .0

"0 ko




RECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

CANONICAL PROBLEM FOR EDGE DIFFRACTION: SEMI-INFINITE ARRAY

+00 +00

A(P)=2 > a(Pind, md,)e
s

g(P:x,y) = eXp[;é:F\;;X Y)] j‘ J‘ G(K)e jke(F— r)dl&dk/

+00  +00 FT00+20 +00+00

>y ] — ]

N=—0m=—c0 —00—00 —00—00

27
K, =K,, +—— : :
p d B(K,) = 1 Train of Dirac delta functions

)T a1 kag)dy
[T ]

kyl ky2 ky3 ky

Train of Poles




RECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

CANONICAL PROBLEM FOR EDGE DIFFRACTION: SEMI-INFINITE ARRAY

Evanescent wave poles

e
FFW  ‘Re{k}

o\ I\ >

Evanescent wave poles Prop

.

EFW -I:(pq

SDP

C, SDP

y

3 T A \\‘
|
\ \ kY kY
““““
4 3 Voov (O R Y R SN y

b
Transition region

N | |
ellipse l
L e |
AN
/Vi EFW| | ]

SB I Propagating Diffracted
RN




RECTANGULAR ARRAY OF DIPOLES IN FREE SPACE

SECTORAL ARRAY

CANONICAL PROBLEM FOR VERTEX DIFFRACTION

Shadow

boundary
cone




ARRAY OF DIPOLES IN STRATIFIED DIELECTRIC MEDIA

GROUNDED SLAB

+00 —+00

A _ f) ~ N (kg T)
A(P)_gz j B(k,)G(k,)e """ dk,

y =% —x

POLES
The single element

2
4 Green’s function is
X changed

kXIO =K, +




ARRAY OF DIPOLES IN STRATIFIED DIELECTRIC MEDIA

Edge excited SW

— ik | zv.sw -
Ee,SW te,SWe JKpq A~ p—
Pq Pq




ARBITRARILY CONTOURED ARRAYS

terms of truncated FW has proven to be very efficient for

In

The description

rectangular arrays.

the number of flash

lar

irregu

However, as the contour of the array becomes

Ined

points increases and the contour may no longer be well def

o
oz
yx
=
=+
B
=2
=z

HO SMOKING

Irregular contours

Polygonal contours






LINE BY LINE STRATEGY FOR ARBITRARILY CONTOURED ARRAYS

The radiation from a uniform finite linear array can be represented in terms of
truncated cylindrical FWs, augmented by the relevant end-point diffracted fields

A uniform planar array radiation can be obtained as a one-dimensional
superposition of the dominant high-frequency contributions from the constituting
finite phased linear arrays

Finite, phased linear array




LINE BY LINE STRATEGY FOR TAPERED ARRAYS

Ll *ﬂ“ u||||||\“m“““”
d°
\
\
\

Jp = f(nd,)e 9F7=ntp

N o—ikRn o
A(P) = A(P)p = ) ———[(nd:)e 97"
n—1 "

By applying the Poisson summation formula the array can be seen as the

superimposition of suitably phased and tapered continuous lines:

Nd, 4

—jkR
A(P) — Z / LT; Rf(f/ e TRV gy — Z Ap(

p=—co a, p=—00

Wlth kzp — f}/z —|—




THE CANONICAL PROBLEM OF THE TAPERED LINE

| |||||||||||||"II||| IIIII f (N d,)

N e 4\MM’MMHMMlIIIIlllWMMJmmuumuuumun:n!m»

It can be shown that the lower-order terms of the high-frequency representation
of the potential are:

Ap(P) = f(zp)Aoo(P)U(’}’p - B)+ +f(0) AZ(P)+[ (Nd.) AF(P)

e—JkT cos(B—
<o< tru ncated FW
Vkp

—jkr 6
o {F [2kr sin? (
< kr ([3 'yp>
SlIl T

uniform contribution

e—JRT (=1)?
kr (cosf — cosvp)
spherical diffracted wave




UNIFORM VS. TAPERED LINE

This approach provides excellent results for uniform arrays, both in the near and
In the far field regions. Accurate results are obtained also for the field radiated
In the near zone by a weakly tapered array. Accuracy, however, decreases when
the observation point moves to the far zone.

Uniform line P 9 — Asymptotic
19 — Element by element

I ‘

_SH 20 40 60 8 100 120 140 160 180

Al (dB)

|||||||”

(deq)

Tapered line .
Fzp) P

H

1 : Il ; L 1 L ] J
8 20 720760 88 (d 10)0 120 140 160 180
€g



UNIFORM VS. TAPERED LINE

This phenomenon can be clearly explained by observing the behavior of the

argument of the radiation integral for different positions of the observer .

° The observer moves in the near field zone.

e~ikR()

4mR(v)

Integrand function

Taylor tapering with R = 10,7 =5




UNIFORM VS. TAPERED LINE

e The observer moves from the near to the far field zone.

kR ()
Integrand function R0 f(v)
1 W 1

L = 50\

Taylor tapering with R = 10,7 =5

The strong localization of radiation contributions is no longer valid for far field
observation!



HOW TO OVERCOME THE IMPAIRMENT?

Approximating the actual current distribution through a suitable
superimposition of uniform excitations allows to go from the near to the
far field region.

This has been done in the past by resorting to DFT or to spatial Fourier
Transforms.

» Nepa, Pathak, Civi, and Chou, 1999
» Cicchetti,Faraone,and Balzano, 2003

A more efficient representation of the radiated field is obtained by linking
the coefficients of the expansion to the characteristics of the actual
tapering associated with the dominant asymptotic contributions.

Specifically, the approximate tapering function is defined to match:

® the value and the derivative of f( z) at the two end-points

® the value and the derivative of f( z) at the stationary phase point (if it lies
on the line)

® the area subtended by f( z)




APPROXIMATION OF THE LINE TAPERING

To approximate the current distribution the following set of basis functions is
employed, which can be immediately rewritten in terms of equiamplitude
linearly phased excitations.

; /_\S'lil (%) l\ cos (f)
Z Z \I Z

) DG )
N

’ \/ 4 :
sin (E) , 2
}//’_ ‘ f(Z) ~ fA(Z) = + Z Cz-e_j%z 4 Z C;ejwz

‘ 1=0 1=0

N = %2@"—1

The expression of the expansion coefficients is obtained in closed form by
solving a linear system of equations.



APPROXIMATION OF THE LINE TAPERING

The conditions relevant to the stationary phase point imply a dependence of
the equivalent current on the position of the observation point, however they
are only required when the stationary phase point lies on the finite line.

— Actual current distribution f(v)
| — Approximated current distribution f 4 (v))
O Stationary phase point




APPROXIMATION OF THE INTEGRAND FUNCTION

Although the approximated tapering function does not equate the actual
current distribution on the whole line, there Is a good agreement between the

relevant radiation integrals:

R =404 |

—ik R
— Actual integrand *

f(v)
c—ikR

47K

AmR
— Approximated integrand

fa(v)
o Stationary phase point



APPROXIMATION OF THE INTEGRAND FUNCTION

Thanks to the condition on the subtended area, the agreement between the
relevant radiation integrals is preserved when the observation point moves to
the far field region

6—ij

i A4m K
i| — Approximated integrand

[H | | H\ ikt

— Actual integrand

ey

6_3

fa(v)
o Stationary phase point




A COMPARISON OF THE TWO APPROACHES

Numerical results confirm that the proposed approach yields more accurate
results when the observation point approaches the far field region:

P
L =20\ . — Asymptotic
E__l
Tl ""‘““\\uu\\m||||\|muuummuuu.l | oyt
.
"""""" > ;Z
Actual current Approximated current

H
S

o
T

|A/|A] 4 (dB)

=20

VAL (dB)
IB 1

=30

Sb 35 40 45 50 55 60
-30N\/

-400

éo 40 60 8b 160 1é0 140 160 1é0 =0 20 40 60 80 100 120 140 160 180
0 (deg) 6 (deg)



LINEAR ARRAY SYNTHESIS

Tapered linear " 01SSON

2. tapered
array > P .

continuous lines

e—JkR(z)

e—ikRn y
Zf(nd e T > [

p=—0C0

dz

/ Propagating modes
COp+ Z Cmpe L2 '_1 < Z mp© ngm !

Coeff|C|ents are chosen to match.

 the value and the first derivative of f at
the end-points and at the saddle point

* the area subtended by f to the line

<

 _ uniform
continuous lines

AN

Evanescent modes
CO+ZCm€ Lam=T _|_ZC’* et

Coefﬁments are chosen to match.
 the value and the first derivative of f at

\ the end-points



PLANAR ARRAY SYNTHESIS

® The radiation from the planar array
IS reconstructed by  numerical
summation of the linear arrays
contributions.

® These contributions are uniformly
asymptotically evaluated as shown

before.
P

N N
7

Y4
® Finally, the field radiated by the

planar array is represented as the sum
of diffracted fields from the actual rim
plus (when needed) a limited number
of conical waves arising from points
located on the array surface.




NUMERICAL RESULTS: ARRAY CONFIGURATION

d=1.6®

i e i i R~
g i iyt
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gy el



NUMERICAL RESULTS: FREE SPACE RADIATION
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Observation plane: x* ,.=0° — Line by line
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NUMERICAL RESULTS: INTERACTION WITH THE ENVIRONMENT

ikl M

— Line by line + DFT
— FEKO (Element by element + PO)

| Total field




