UTD Gaussian Bean Diffaction by an Edge

- H.-T. Chou, P. H. Pathak, and R. J. Burkholder, "Novel Gaussian Beam Method for the Rapid Analysis Large Reflector Antennas," IEEEE Trans, AP, June 2001.
Previous work of Chou, Pathak, and Burkholder (June 2001) provides a PO based edge dififiraction of GB.
The PO-GB is more general in that it can handle asticmatic GB illumination of
 an edge.
, The PO-GB can be augmented by PTD correction if desired.
, The CSP method is more accuraite since it yields a UTD-GB; however it is limited to rotationally symmetric GBs.

Formulation

- Extension of the Kouyoumjian-Pathak (K-P) UTD for a CSP excitation

The ordinary K-P UTD for E(P) is anallyticelly continued from a real to complex source loceition. The \widetilde{r} is connplex for CSP Note: Ko is related to the weist of GB

$$
2 w_{0}=\sqrt{2 b / k} \quad b>0
$$

Formulation

(CONTID.)

- For CSP, the x^{\prime}, y^{\prime}, and z^{\prime} in r^{\prime} becomes $\tilde{x}^{\prime}, \tilde{y}$ and \widetilde{z} where

$$
\begin{aligned}
& \widetilde{r}^{\prime}=\sqrt{\tilde{x}^{\prime 2}+\widetilde{y}^{\prime 2}+\widetilde{z}^{\prime 2}} \\
& \widetilde{\widetilde{R}}_{i}=\bar{r}-\widetilde{r}^{\prime}
\end{aligned}
$$

In the K-P UTDD expression, the F $F k L a^{ \pm}\left(\phi \pm \tilde{\phi}^{\prime}\right) \mid$ now becomes complex for a CSP becouse L and o' $^{\prime}$ gre complex.
Note: $\tilde{L}=\frac{\tilde{s}_{d} \tilde{S}_{d}}{\tilde{s}_{d}+\tilde{s}_{i}} \sin ^{2} \tilde{\beta}_{0}$ end $\tilde{a}^{ \pm}=2 \cos ^{2}\left(\frac{2 n \pi N^{ \pm}-(\phi \pm \tilde{\phi})}{2}\right)$
Complex
Argument of Transition Function

$$
\tilde{\chi} \equiv k \widetilde{L} \widetilde{a}^{ \pm} \|-\frac{3 \pi}{4}<\arg \sqrt{\tilde{x}}<\frac{\pi}{4}
$$

Formulation
 (CONTID.)

- 3D K-P UTD for a wedge via CSP

Numerical Resulits

- 3D Total Field from CSP excifed PEC wedge with wedge angle $\alpha=60$ deg

$x^{\prime}=0, y^{\prime}=2 \lambda, z^{\prime}=-2 \lambda, r=6 \lambda, b=2 / k$,
$w_{o}=0.38 \lambda, \phi_{b}=270$ deg, anul $\theta_{b}=45 \mathrm{deg}$

Numerical Results
 (CONTID.)

- 3D Total Field from CSP excited PEC Half Plane Observed on the Keller Cone

Numerical Results (CONTD.)

- GB Edge Diffraction on the Keller Cone

