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MOTIVATION

Best way for multiple users to transmit over a shared medium? Orthogonal

access? Simultaneous?

Differences between uplink (multiple access) and downlink (broadcast)

channels?

Impact of multiple transmit and/or multiple receive antennas?

In multi-user systems, can we take advantage of fading?

Can the scheduling process be enhanced with channel-related information?
Combined use of queue and channel information for scheduling?

Information theory approach: keep it general !!

OUTLINE

o Motivation

o A review of capacity issues in single-user systems
v Definition, Capacity for MIMO systems.

o Capacity issues in multi-user systems:
v Broadcast (BC) and Multiple Access (MAC) channels.
v Capacity regions for SISO BC & MAC. Sum capacity. Symmetric capacity.
v Multi-user diversity. Channel-aware scheduling.
v Fairness issues: Proportional Fair Scheduling
v Slow-fading channels: Opportunistic Beamforming
o Channel- and queue-aware scheduling

v Motivation

o Q&A




OUTLINE

o A review of capacity issues in single-user systems
v Definition, Capacity for MIMO systems.

A REVIEW OF CAPACITY ISSUES IN

SINGLE-USER SYSTEMS




CAPACITY IN LINEAR TIME INVARIANT SYSTEMS

N~CN (0K,)
X X’
— H —»@—» Y GAUSSIAN
r(K,)<P NOISE!

LTI (ISI, MIMO)

+Definition of mutual information
I(X;Y)=h(X)-h(X|Y) with h(X)=E, (-logf. (x))
WX |Y)=E, (-log [, (x]»)
» Information capacity of an AWGN channel with power constraint P:
C= r}}fgd(X; Y)
st. w(K,)<P

Mutual information maximized for GAUSSIAN input:

X~CN (0,K,)

CAPACITY IN LINEAR TIME INVARIANT SYSTEMS

* Inthese conditions, maximizing mutual information amounts to:

_— Signal

&
C 1(x;Y) I(X;Y)=maxl uK HHl
= max ;Y )=max ; maX og
]\olsc+mt1rtcrcnc1/S.: tr <P
Remarks:

In general, K, depends on H and what information is available @ Tx side (partial, full, none).
Units: bits/s/Hz...when log = log,
Interpretation (Shannon’s Channel Capacity Theorem): For every data rate R...

Information capacity (C) provides an upper bound of the
achievable data rates (R)

Assumptions: Gaussian input symbols & ideal channel coding (and decoding)
Useful equivalence:

K, +HK H"|

C =maxlog = max log‘ 1+K,'HK H”




MIMO CHANNEL MODEL
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» Simplest model:

» Channel: Flat fading (frequency), static / independent Rayleigh fading (time)
+ Noise: Gaussian (spatially) white N~CN (0,K,)— W ~CN (O,Nalnk )
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h h e h X w
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CAPACITY OF MIMO SYSTEMS (LTI)

C =maxlog I+ K, HK H" | K,=N,I,
KX R
» SISO, Shannon Capacity
Asympt growth
K =P ‘ ‘ ) LOG in power
C =logl 1+——— | =logl(l+SNR
(K,=N,) . g e i.e. 1 bits/s/Hz
every 3dB
* MIMO, no CSI at Tx — Isotropic transmission:
— H
K, = ﬁ[” . C= 10g I+ n HH Asympt growth
. T o"'T
"1 R LOG in power
C=nlog +> log LIN in antennas
oflr =l
- MIMO, full CSI at Tx — Waterfilling over channel eigenmodes (SVD): Rk
K =V dlag L
Y . C= ZIOg[1+N A P]
H=Udiag(4...4,)V

Power allocation (Lagrange): P,(A,):(,u—%] i=l...n ZE:P n=min(n,,n,)
: p
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CAPACITY OF MIMO SYSTEMS (LTI)
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SISO: LOG in power |

i.e. 1 bits/s/Hz every 3 dB

‘ MIMO: LOG in power, LIN in antennas ‘

i.e. n bits/s/Hz every 3 dB
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o Capacity issues in multi-user systems:

v~ Broadcast (BC) and Multiple Access (MAC) channels.

OUTLINE

~ Capacity regions for SISO BC & MAC. Sum capacity. Symmetric capacity.

v Multi-user diversity. Channel-aware scheduling.

v Fairness issues: Proportional Fair Scheduling

v Slow-fading channels: Opportunistic Beamforming

~ Capacity regions for MIMO BC & MAC. Duality principle.
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CAPACITY ISSUES IN MULTI-USER

SYSTEMS
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BROADCAST AND MULTIPLE-ACCESS CHANNELS

Broadcast Channel (BC):
» Downlink
» One transmitter to many receivers simultaneously

Multiple Access Channel (MAC):
» Uplink
» Many transmitters to one receiver simultaneously

Remarks:

» Users can be regarded as an antenna array

in a large area.

» Cooperation among antennas within the
SAME location.

» Multiple antennas in one location enable
Space Division Multiple Access or stream |
Multiplexing. (e




MIMO BC and MAC - CHANNEL MODEL

* One base station (BS) equipped with n; (n,) antennas

* Kuser equipments (UE) equipped with ng, (n,,) antennas each

BS Shared power constraint UE individual power constraints

1
1
1
|
i y=Hx+n,
|
! X
1
1
1
1
' yi~Hgx + ng
1
L e e ]
Broadcast Channel (BC) Multiple Access Channel (MAC)
15
+ SISO, MAC, AWGN channel, K=2 users:
ylm]=x,[m]+x; [m]+ wlm]
Py P, « Single user: Rate R achievable (with arbitarily low error rate) iff
R<C - C upper bound on performance
* Multi-user: UEs communicate with BS in a shared bandwidth >
trade-offs turning up!!
AWGN + Set of achievable rates (R,,R,) with simultaneous communication??
R ” CAPACITY REGION, C! ‘
R2 R, < log(l-t-%}
B » Characterizes optimal trade-off achievable
log[n:—a] N H¥] by any MA scheme.
% o « User 2 gets R,>0 while user 1 attains single-
user bound (A) !!
“’g[“ﬁ] Ay gmg(H%J « HOW? Successive interference
45- o Cancellation (SIC).
> » Reversing detection order leads to
]0g[l+[’:fNU] m[uﬂ R, different rate split (B) - fairess
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MEASURES OF INTEREST

+ Some performance measures (scalars) for a capacity region:

e Sum capacity | C,,, = max R +R, + Reached at AB segment (ANY point)
« Points A,B achievable via SIC

« Intermediate points in AB via time sharing or
rate splitting

«  Working point TBD according to fairness
constraints

OPTIMAL OPERATING POINTS
FOR SUM CAPACITY

R|+RZSlog[l+%]

0

B B
log[H L ] log(H—'] R]
BN, log[HLJ N,

132+N0

» Symmetric capacity | C. = max R

» Reached @ boundary (near/far) - C
17

GENERAL CASE: MAC with K users

Zkes Rk P
ZR,{Slog I+==— R <log| 1+—
keS N() No
R, 2K-1 constraints R, < 1Og[1+P2J
A 2K-1 non-empty subsets S of users N,

v
o~




CAPACITY REGION FOR BC-AWGN

' « SISO, BC, AWGN channel, K=2 users:
) S 1 Y 0 I 0 R 9 B R

» BS communicates with UE in a shared bandwidth & shared
| ) power (P) - trade-offs turning up!!

* How to MUX data for both users at the BS? x[m] = ??

AWGN + Set of achievable rates (R;,R,) with simultaneous comms.??

Assume: User 2 is the “strongest(|,| >|/4|) and superposition coding x[m]= x, [m]+x,[m]

If x; decodable at UE, (weakest) in the presence of x,, so is at UE, (strongest) for all power
splits P; P, (not possible if reversed order)

2 2

SNIR = Al Rl =SNIR
T _RYA[ 4N, (=B[N,
So apply SIC at the strongest (UE,) and
Plhl P-P)h)
R, =log 1+7" 1 R, =log| l+7( ])‘ ‘
(P_Plxhlh-'—NO No
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Rate of user 2

CAPACITY REGION FOR BC-LTI (cont’d)

Superposition Coding
[T—==Orthogomal

» SC boundary given by all P,/P, splits

I:_I

——e Sum-rate: allocate ALL power to strongest
user (UE,)

...at the expense of delays!!

Best policy in BC-SISO: ONE user at a time

(vs. MAC-SISO: ALL users simultaneously)

» Orthogonal multiple access strictly
suboptimal for all power splits!!!

i i ; » SC: low power for strong user (UE,) is
02 0,4 0,6 08 1

efficlently exploited (x, removed) and low
Rate of user 1 interference to weaker (UE,)
_ L — (1=2)nf . .
R, —alog[H aNO] R,=(I a)log[H o). Remarks:
_ _pn n « Strong assumption: DEGRADED BC
arfarnwfpdp2 =7

« MIMO is non degraded.

« Degradation not needed in UL
(centralized Rx & CSI).

Orthogonal multiple access

20

10



BC CHANNEL WITH FADING

» SISO, BC, fading channel, K users:
v lm]=h[m]xlm]+ w,[m]
k
* Assumptions:
| hk » Fading processes ( {/, [m]} ): Independent and identically
distributed (symmetric case).
Y fading Y

M~

Power constraint (pooled power) : EH|:

Pk[m]}z)

Take the case with CSIT (i.e power allocation possible):

* AWGN: Sum capacity maximized by transmitting to the BEST user

Fading: Schedule the BEST user at EACH time (greedy approach). Equivalent point-to-point channel

[#f, = maxin, |

.

How to allocate power? Temporal waterfilling for the equivalent P2P channel

+ ] 2
P)=| T o=l 1+ 7 Ol
A ? N,
max,_, x ‘hk‘

0
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.

.

2 2 2 . - .
|| — \h\eq =max|h| Higher gain means higher (sum) rate!!
k=1..K
-&- AWGN
Com bits/siHz] - ] Py {
ket SRR 038
S it
, g AT
T =
& A=2.1b/s/Hz
SNR=£ : { A=15b/s/Hz
f \ vy
- o1
mentals of Wireless Communications, Cambridge Univ. Press 2005 SNR [dB]

MULTI-USER DIVERSITY (MUDiv) GAIN

With K users FADING INDEPENDENTLY and OPPORTUNISTIC (DYNAMIC) SCHEDULING,
channel gain improves

Gain wrt AWGN for K>1 (mid-high SNR)

The amount of MUDiv increases with pdfs’ tails: Rayleigh > Rice (k=5, LOS, less “random”)
MUDiv gain increases with nr. of users (K): the stronger is the strongest channel
22
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MULTI-USER vs. CLASSICAL DIVERSITY

* Purpose:
» Classical (time/frequency/space): Increase link reliability (slow fading)
* MUDiv: Increase average cell throughput (fast fading)
...but no rate guarantees in specific fading states
* Means:
» Classical: Counteract adverse fading effects.
« MUDiv: Exploitindependent fading (capture strongest user)

+ Scope:
» Classical: Works at the link level
* MUDiv: System-wide (active users)

23

REMARKS ON MUDiv

+ Signalling:

» UEs: Track their link quality (common pilot)

» BS: Access to quality measurements (delay-free feedback channel)
 Delay in the feedback channel (ass.: delay&error free)

+ Mismatch actual channel-measured channel

« FIX: | scheduling slots = T signalling overhead = selective MUDiv (f/b iff above threshold)
» Fairness & delay:

» Non-homogeneous user set in real-world networks (assumed so far)
« Different statistics (Rayleigh, Rice,...) average SNRs (near-far).. RESOURCE ALLOCATION ??

* FIX: Proportional Fair Scheduler (PFS)

24
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PROPORTIONAL FAIR SCHEDULING (PFS)

Symmetic case (SNR,,,=SNR,,,) Asymmetic case (SNR,, differ) Asymmetic case (SNR,, differ)

Requested rates in bps/Hz

B £ E Cr — e B 3 ES

& e i
Time Siots Time Siots Time Siots

Opportunistic-greedy is FAIR Opportunistic-greedy is UNFAIR Opportunistic-PFS is FAIR
» Proportional Fair Scheduler: Schedule user with peak rate with respect to its average rate
k,[m]:maxm Il ]={(l—l/t(,)Tk[m]+(l/t(‘)Rk[m] kzkt,
& 1 [m] g (1-1/2,)T,[m] k#k
» PFS vs. greedy opportunistic schedulers:
» Both channel-dependent (vs.round-robin, vs. queue-based). PFS implemented in 1S-856.
» Greedy: No short-term fairness, captures MUDiv, maximizes average sum-rate.
* PFS: No short-termfairness, long-term fairness (same # access), captures some MUDiv, loss in
average sum-rate.
» Latency time scale (t), a design parameter: if larger, larger averaging period, higher latency
(schedule when hitting a really high peak) S |

REMARKS ON MUDiv

Limited and slow fluctuations (ass: high & fast)
+ Limited: poor scattering/LOS — Slow : low mobility environment
* Result: low cell throughput (peaks) - Delay requirements not met.

* FIX: Opportunistic beamforming.

26
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OPPORTUNISTIC BEAMFORMING

« Slow fading hurts: If all users fade slow = like K=1 user = no MUDIv

+ Limited fluctuation hurts: lower peak rates

() Y T O]
—ql@ S
= N
- W

o _ . user k
LT(Q@Y ‘ ' hn,k(t)

TRICK (MISO): Induce fast and high fluctuations by transmit beamforming with a time-
varying common set of random weights (e.g circularly symmetric Gaussian):

- @nkx[mhwk[m]

Random weights

alml=lg.m]...q,, I}
LN N A 1
with

lalm]f =1

measure at UE,
feedback to BS

When are SNR peaks reached?: When beam “points” at user k

q[m]//hg [m] - “OPPORTUNISTIC BEAMFORMING”
27

OPPORTUNISTIC BEAMFORMING (cont’d)

Before opportunistic After opportunistic
beamforming beamforming
Channel Channel
Strength Strength

1
1
1
1
1
user 1 . i
1
1

Channel
Strength

[
user 2 ”
f |

transmission times

* How fast should q[»] change?: Design parameter:
« Fast enough to induce fast fading

« Slow enough for reliable channel estimation, timely feedback, stable loop.

28
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OPPORTUNISTIC BEAMFORMING (cont’d)

DOES OPPORTUNISTIC BEAMORMING ALWAYS HELP?

SESRT . .
+  Slow fading h[m]=h, : Constant — ‘hkq[m] : Fast & high fluctuation YES

+  Fast Rayleigh fading: h,:[m]: iid. Gaussian — h,:q[m]z:i.i.d. Gaussian NO

i.e. identical distribution for ANY distribution of q

Fast Ricean Fading:  j, [m]=h, + 4, [m] — ‘h m]q[m]

Additional power for FAST fluctutatlons
No additional fluctutatlons

24 E 18 1 antenna, Ricean
iy? Rayleigh ‘-5
I
7 "
b=t 12|
21| P e z
= 2 antenna, Ricean, Opp. BF 21 o,
3 5 -
18 a
= o \
@ o 4
graf \2 antenna, Ricean
5 o] % \
|1 1 antenna, Ricean Jf \
2, A\

M 04 i

02
Rayleigh
o o~ = S =
0 5 20 2= 30 05 [ i5 2 2%
Number of Users Channel Amplitude
D. Tse,P. Wiswanath, Fundamentals of Wireless Communications, Cambridge Univ. Press 2005 D, Tse.P. Wisseanath, Fundamentals of Wicless Communications, Cambridge Univ. Press 2005
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REMARKS ON OPPORTUNISTIC BEAMFORMING

Opportunistic vs. coherent beamforming:

1

| cenerenteF
" — Opp. BF
gz /” » Performance: Comparable for high K
;; / (always a user to point at)
E. + CSIT needs:
§ i * Opp.: SNR only (Opp.)!!!
n,_;" 1 + Coherent: full CSI

Multiple transmit antennas just for inducing fluctuations? Can we do better?

+ Still inducing fast fading

MULTIPLE ORTHOGONAL
YES v ORTHOGO + Additional spatial multiplexing gain (SDMA)

RANDOM BEAMS - Extra overhead for SNR measurements &
feedback 30
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OUTLINE

o Channel- and queue-aware scheduling

v Motivation.

o Q&A

31

CHANNEL- AND QUEUE-AWARE

SCHEDULING

32
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ASSUMPTIONS REVISITED

Implicit assumptions so far...

* Ass. 1: Infinite transmit buffer size:
« Users can be delayed without bound (to maximize sum-rate).

« Did not care much about packet arrival rates.
» Ass.2: Scheduled user(s) always have data to transmit
BUT in realistic scenarios...

» Finite buffer size:
*  When close to buffer overflow, user should be scheduled regardless of channel conditions.

+ If too many packets arrive, buffer bound to explode.

» Traffic is bursty: no point in scheduling a user with empty buffer!
CONCLUSION: Channel and queue (buffer) information must be jointly

considered in the scheduling process (i.e. cross-layer)

33

QUESTIONS ?

34
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