
Antenna Arrays in Mobile Communications: 
Gain, Diversity, and Channel Capacity’ 

J~zrrgen Bach Andersen 

Center for Personkommunikation, Aalborg University 
Fr. Bajers vej 7, DK-9220 Aalborg East, Denmark 

Tel: (45) 98-1 5 8522; Fax: (45) 98-1 5 1583; E-mail: jba@cpk.auc.dk 

Keywords: Antenna arrays; Land mobile radio cellular systems; antenna gain; land mobile radio diversity systems; information 
rates; array antenna theory 

1. Introduction 

re antenna arrays in mobile communications different from A arrays in other applications? Yes, sometimes, and it is the 
purpose of this paper to explain, in a tutorial fashion, when this is 
the case, and what this means for path loss in link calculations. 
One thing is the classical gain of an antenna, which we have to 
understand in a new way. Another thing is the possibility for two 
arrays, in a scattering environment, to create parallel channels, and 
thus, in effect, act as many independent antennas at the same time, 
carrying much more traffic over the same bandwidth [ 1-31, 

Let us review the well-known free-space situation first. Con- 
sider two linear arrays of M and N elements, with the assumption 
that M > N. For convenience, it is assumed that the left array of M 
elements is the transmitting array. The path-loss equation is given 
by the classical Friis formula, 

Under some qualifying assumptions-like neglect of mutual cou- 
pling and element pattern-the two gains are M and N, respec- 
tively. A standard spacing of half a wavelength is also assumed. 
The underlying assumption, here, is that the other antenna looks 
like a point source as seen from one antenna, and thus a plane wave 
from one specific direction is radiated (and received). If instead of 
direct line-of-sight (LOS) there was just one path, like scattering 
from a dominant scatterer, then the equation would still be valid as 
far as the antenna gains are concemed. The more usual situation in 
mobile radio is a wide angular scattering (Figure l), where the 
angular spread as seen from the mobile is often large, and where 
the scattering as seen from the base station depends on the height 
and the general environment. We have highlighted one path out of 
many going from one element at the transmitter to one element in 
the receiver. The distance dependence in Equation (1) is, of course, 
also changed by the scatterers, but this is not our concern here. The 
point of view is that the information-carrying signal is scattered in 
many directions, and the general question is, how should we 
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Figure 1. Two linear arrays of M and N elements in a scattering 
environment. 

organize the combining of elements to maximize the power trans- 
fer? At each antenna, we assume that we can apply different com- 
plex weights at each element, so there is complete freedom at both 
ends to combine the antenna signals. 

The notation is U = (U, ,U2,..,UN)T for the receiver weights, 

and V = (q,V2,.. ,VM)T for the transmitter, where T means trans- 
pose. Both vectors are normalized to unit length. The narrowband 
channel connecting all elements may then be described by an M by 
N complex matrix H , where Hv is the complex transmission coef- 
ficient from elementj, on the left side, to element i, on the right 
side. 

2. Antenna Gain and Diversity 

2.1 Transmitter Weights Fixed 

For simplicity, assume that the transmitter weights are fixed, 
like in a beam mode where all the elements of V, are identical in 
magnitude, with a uniform phase difference. This would be an 
obvious choice when the transmitter does not “know” the channel. 
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On the receive side, the incident signal is S = H*Vo 

As is well known, the receiver maximum-gain weights are 

and the received power is the sum of the powers from the N ele- 
ments: 

( 3 )  

For many scatterers and non-LOS, the power at one element will 
be exponentially distributed (each transmission coefficient is 
Rayleigh fading), and the distribution of the sum of the powers will 
depend on the correlation. If the scatterers in Figure 1 shrink to an 
narrow angular range, then they will appear as a point source, and 
the fading will be spatially flat. In this case, the signals will be 
highly correlated: 

Table la.  The mean link gain for the beam mode 
for both arrays. 

Table lb.  The mean link gain for maximum-gain combining 
for both arrays. 

I Transmitter I 
High SDread 

If we define the array gain as the mean value of the received power 
relative to one element at each end, then the array gain in this case 
is clearly N. 

Table IC. The diversity order of the link for 
maximum-gain combining. 

Receiver Low Receiver 
Spread High Spread 

In the other extreme, where the scatterers are spread out in all 
directions, the signals will be uncorrelated but Equation (4) will 
still be valid, so the array gain is also N in this case. On top of this, 
we get Nth order diversity gain for the uncorrelated case, where all 
transmission coefficients are fading independently. 

. If instead of the maximum gain combining of Equation (l), 
we had chosen the beam mode for the receiver as well, i.e. 

( 5 )  

then it can be shown that the mean receiver-array gain is 1. This is 
natural, since a narrow beam does not help when the energy is 
spread out in all directions. The above may be summarized as in 
Tables la-lc,  for the mean link gain and diversity order. 

As an example, let us discuss the upper-right comers of 
Tables la-lc, with low angular spread (high correlation) at the 
transmitter and high angular spread (low correlation) at the 
receiver. In the beam mode, the transmitter array sees a point 
source and has gain M, the receiver has gain 1, and the joint link 
has a gain of M. In the combining mode, at the receiver the mean 
gain is N (as is the diversity order), so the total gain is MN. The 
lower-right comers of Tables la-lc refer to the joint optimization 
of the two arrays, which is the subject of the following section. 

2.2 Transmit-Receive Gain for 
Wide Angular Spreads 

The SVD (singular-value decomposition) [4] is an attractive 
technique for solving the joint optimization of the two sides, the 
transmit side and the receive side. In the following, it is assumed 

Transmitter 
Low Spread 
Transmitter 
High Spread 

that the complex matrix (the channel matrix) is known at both the 
transmitter and receiver. This is not so strange as it sounds, i.e., in 
a TDD (time-division-duplex) case, where the channel is reciprocal 
because the frequency is the same in both directions, the channel 
will be known at the transmitter as well, unless the channel 
changes too rapidly. 

An SVD expansion is a description of H as given by 

where D is a diagonal matrix of real, non-negative singular values, 
the square roots of the eigenvalues of G = H ' H ,  a Hermitian 
matrix. The columns of the orthogonal matrices U and V are the 
corresponding singular vectors. Since G may be written as 

it follows that the columns of V are eigenvectors of G 

The SVD is particularly useful for interpretation in the 
antenna context. Writing Equation (7) differently, 

for one particular eigenvalue, it is noted that VI is the transmit 

weight factor for excitation of the singular value & . A receive 
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Figure 2. The gain relative to one element of ( N ,  N )  arrays in a 
correlated situation ( p  = 0), and in an uncorrelated case 
( p  = 1) .  The upper bound equals 4 N ,  and is the asymptotic 
upper bound for the gain for N tending to infinity. 

weight factor of U; , a conjugate match, gives the receive voltage, 
and the square of that gives the received power: 

(9) 

Thus, the eigenvalues correspond to the power gains, and all we 
need to do is to extract the largest eigenvalue with corresponding 
V and U vectors, and maximum gain is achieved for that par- 
ticular channel matrix. 

Recent results [5], conceming the distribution of the eigen- 
values of a random Hermitian matrix, can give some insight into 
the maximum gain and how it varies with M and N. In the asymp- 
totic limit when M and N are large, it may be shown that the largest 
eigenvalue is bounded above by 

This indicates that the joint link gain can no longer be separated 
into a transmitter-antenna gain and a receiver-antenna gain. For 

M = N ,  the gain equals 4N, which is much less than the N 2  
available when the spreading is small. As an explanation, compare 
the ( M , N )  case with the (1,N) case. In the latter case, we have N 
degrees of freedom (elements of the weight vector) and N different 
signals, which matches. In the former case, we have M + N 
degrees of freedom but MN different signals, a clear mismatch for 
large M and N, and we must accept a reduced gain. Although the 
gain is reduced, it is still greater than M and N, and the diversity 
order is truly large, namely MN. This follows from the fact that 
there are MN different signals, and the probability of having all 
paths fading at the same time is vanishing small. Thus, the fading 
has practically disappeared for reasonable values of M and N. 

The mean gains for p = 0 (uncorrelated signals) are shown 
in Figure 2, together with the upper bound and the gain for the cor- 

related, free-space case, N 2 .  For N = 10, the true mean gain is 
just 1 dB below the upper bound. Thus, the price to pay for the 

random scattering is a diminishment of the gain from N 2  to 4N for 
N large. For a partly correlated case, we can expect the gain to lie 
between the p = 0 and the p = 1 cases. 

2.3 Implications for Path Loss 

Equation (1) implies that the received power decreases as the 
square of the carrier frequency for frequency-independent gains 
like dipole, or other small handset, antennas. If instead the antenna 
apertures are introduced in the free-space case (or in the case of 
small angular spreads), the situation reverses, as is well known. Let 

AI = M-, A2 = N - ; then, the path-loss equation for the cor- 

related case reads 

R2 R2 
4 r  4n 

&=4- AI '42 
R2R2 ' 

and for the uncorrelated case, 

Pr =e 
4nR2 

This has the interesting result that the frequency dependence has 
disappeared for the uncorrelated case. The assumptions behind 
Equation (12) are the same as in Equation (10). 

The equations imply that we can only gain from going to 
higher carrier frequencies for given areas of antenna arrays, when 
atmospheric absorption and diffraction are ignored. When the 
spreading is small, the joint gain may be very high, and when the 
spreading is large, the worst situation is a constant power: it does 
not decrease as in Equation (1). The true benefit would be that 
there is more bandwidth available at the higher microwave fre- 
quencies. 
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Figure 3. N different signals are distributed over the M anten- 
nas, with the resulting N parallel channels. 
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3. Spectral Efficiency of Parallel Channels 

An illustrative case is shown in Figure 4, for a basic mean 
SNR of 10 dB for one antenna. The spectral efficiency has 
increased in the mean from 2.9 to 18.8 b/s/Hz, when using 12 

- 

The joint gain of the link corresponded to the largest eigen- 
value of G. The first question is, how many eigenvalues are there? 
For the completely correlated case, there is only one, but for the 
uncorrelated case, there are min(M, N)  distinct eigenvalues with 
corresponding pairs of V and U vectors. Since we have been 
assuming M > N ,  we have N eigenvalues. This tells us that it is 
possible to send multiple sets of data over the same physical chan- 
nel for the same bandwidth, since the weight vectors corresponding 
to separate eigenvalues are orthogonal [l-3, 6-71, In this way, the 
spectral efficiency can be greatly increased. Physically, the many 
different paths in the environment create the possibility of multiple 
channels, as illustrated in Figure 3: All we have to do is to 
diagonalize the channel matrix, as was done in the previous sec- 
tion. 

The seemingly complicated, random environment in mobile 
and personal communications gives rise to some new possibilities 
in the antenna area. The received fields come from many different 
directions, and for a noise-limited system, it is important to absorb 
all the energy. For those situations where the channel transfers 
from all elements to all elements are known, it is possible to 
maximize the total transfer power by jointly adjusting the antenna 
weights in the arrays. The resulting joint antenna gain depends on 
the angular spread of the environment as seen from the two anten- 
nas: In one extreme of high correlation, we get the usual free-space 
gain, while in the other extreme, we get a smaller gain, due to the 
lack of degrees of freedom. If we introduce antenna apertures in 
the link budget instead of directivities, it is interesting to observe 
that we obtain a link gain that is independent of carrier frequency. 
This seems to indicate that it should be worthwhile to go to higher 
frequencies to get the higher bandwidths available. 

The situation is easily described by Shannon’s information The other possibility in a wide-scattering situation is to apply 
different information signals to the various antennas, and to utilize 
the inherently high spectral efficiencies of the channel. This may 
be done by effectively creating a number of parallel orthogonal 
channels, which all have high gain and high-order diversity, espe- 

number of receive antennas. 

measure: 

C = log2 (1 + P / c )  b/s/Hz, (13) 

where p/“ is the signal-to-noise ratio, S N R ,  for one channel, For cially when the number Of transmit antennas is higher than the 

N parallel channels, the capacities add: 

N 
C = C l o g 2  ( l+l i4 / f f ) ,  

I 
(14) 5. References 

where 4 is the power put into channel i, and 1, is the gain of that 
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