6th IEEE Nordic Signal Processing Symposium, Espoo, Finland, June 9-11, 2004

On the characteristics of MIMO
mutual information at high SNR

J. Sdlo, P. Suvikunnas, H.M. El-Sallabi and P. Vainikainen
Helsinki University of Technology/SMARAD, Radio Laboratory
Email: jari.salo@hut.fi

Abstract—We consider a Multiple-Input Multiple-Output
(MIMO) communication system where the transmitted vector has
a Gaussian distribution with (scaled) identity correlation matrix;
this is the capacity-achieving channel input distribution for a
block fading Rayleigh iid MIMO channel when the transmitter
has no channel knowledge and the receiver knows the channel
perfectly. We decompose a high-SNR approximation of the
mutual information as a sum of three terms involving: i) a
supremum capacity; ii) the effect of fluctuation of SNR about
its mean; iii) the effect of eigenvalue dispersion of the channel.
The decomposition provides some insight on the mechanisms that
affect the MIMO mutual information at high SNR. Further, we
analyze the first and second order statistics of the terms in the
decomposition under the assumption of frequency-flat Rayleigh
iid fading.

I. INTRODUCTION

The enormous capacity of MIMO communication channels
has spurred an avalanche of research on different aspects
of multi-antenna radio communications [1] [2]. Some of the
recent research has concentrated on analysis of first order
statistics of MIMO mutual information (i.e., ergodic capacity)
under Rayleigh fading channel statistics, see e.g. [3]-{8].

Our focus here is on the simple capacity lower bound
analyzed by Grant and Gauthier et a [4] [7]. Our purpose is
not to derive new bounds but instead to decompose the Grant-
Gauthier lower bound into a form that provides us with some
insight into the structure of the mutual information at high
SNR. Our results are closely related to those in [9], where the
statistics of mutual information were characterized in terms of
first and second order statistics. The contribution of this paper
is to extend the analysis therein to the SNR and eigenvalue
dispersion dependent components of the mutual information.

The paper is organized as follows. In Section | we introduce
some basic concepts and rewrite the Grant-Gauthier lower
bound as a sum of three terms that form the mutual information
“decomposition”. In Section |1l we compute the means and
variances of the terms of the decomposition in the Rayleigh
iid fading case. Some illustrative graphs are provided to
accompany the analytical results. Section IV concludes the

paper.
Il. A DECOMPOSED LOWER BOUND FOR MIMO CAPACITY
A. Basic assumptions and definitions

We consider a MIMO system with n, transmit and n,. re-
ceive antennas. Assume that the transmitter signal distribution
is complex Gaussian with correlation matrix %Im, where P

is the total transmitted signal power. Then, for agiven n,. x n;
channel matrix H, the MIMO mutual information is [1], [2]

Cu = log,

I, + ﬁHHH' : @
ny

where p is the average SNR at the output of each of the n,.
receiver sensors. Complex additive white Gaussian noise, iid
in spatial and time domains, is assumed throughout the paper.

Assuming that the receiver knows the fixed, nonrandom H
perfectly and that the transmitter has no knowledge of it, Cy is
the maximum of mutual information, i.e. the channel capacity
associated with H.

B. Decomposed Grant-Gauthier lower bound
Motivated by [T + AB| = |I + BA|, and the inequality
I+ A| > |A]| (for positive definite A), we define
B {HHH
HH,

if n, <mny
if n,. >n;.

and consequently lower bound (1) as Cu > log, |2 W].
This is the Grant-Gauthier lower bound [4] [7]. '

Note that the tighter Minkowski determinant inequality [10,
p. 482] could also be applied here, as in [3]. However, at the
high SNR region, this would lead us to the same end result in
our upcoming devel opment.

Consider an ergodic sequence of channel matrices,
{H® i=1,2,... }. Thisis the block fading model. Denote
K = min(n,,n;). We adopt the usua power normalization
E[HD 2] = B[, 2] = nng, and (A k=
1,...,K} are the eigenvaluest of W,

Denote m” = L0 A and m, = E[m{’]. The
lower bound may be written as

Cuwm > logQ‘nﬁw(i)
t

K K
P Nyl (2)
1 L
Og2 [(nf ng) H )\k ]
K A\ K A\ K
g, [(2 0 ) " ()
&2 ng K Mg mgi)

1We neglect the pathological cases (e.g. keyhole) where rank[W (9] < K,
or, rather, assume that probability of such an event is vanishingly small.
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+ K logy (1%), @
where my) = (TI/_, A{) " is the geometric mean of
the eigenvalues of W@ and v = m{? /m{" is the ratio of
their geometric and arithmetic means, which is a well-known
measure of sphericity in multivariate statistic [11, p. 427].
Interestingly, the same parameter also arises in the likelihood
term of several model order estimators used in array signal
processing [12]. It provides a natural scale-invariant (wrt p)
measure for the dispersion of the channel eigenvalues. Note
that 0 < v(*) < 1, where the maximum value is attained when
all eigenvalues are equal, i.e. the case of K paraled AWGN
channels.

The decomposition (2) admits an intuitively appealing inter-
pretation. The first term of (2) is alower bound of supremum
capacity? for the set of channel matrices S = {H : |H||% <
nyn, +. Here we define Cyyp, = supgcg Cu. The second term
isthe effect of instantaneous SNR normalized by its mean. The
third term measures the instantaneous capacity degradation
from the supremum due to eigenvalue dispersion (note that
this term is always non-positive); this may be interpreted as
the efficiency of spatial multiplexing. Therefore, we interpret
the mutual information as a sum of three terms and write (2)

as

(2)

a

K log, (%) + K log, (

a

1/K

Crro > Coup + O+ C,. A3)

We stress that in (3) we have separated the effects of SNR
(both average and instantaneous) and eigenval ue dispersion on
the mutual information. The only statistical assumption made
so far is the average power gain constraint on H.

Note that the “fading gain” term may also be written as

7) ]2
C’J(fgd = Klog, (E”H( i

[IHO|Z] )

which perhaps better illustrates its role as the instantaneous
capacity gain (or loss) due to instantaneous SNR fading
defined as the sum of the power gains of the n,n, paths.

Let Y = log, | .= W|. For p/n; large, the lower bound (2)
is tight in the sense that, for fixed n, and n;, lim, o (Cu —
Y) = 0 for any positive definite W. Hence by selecting p
large enough we can make (3) an accurate approximation of
the mutual information. It can be shown that the smallest
eigenvalue dominates the error of the bound and hence the
bound is not tight if one or more of the eigenvalues are in the
order of % or less.

To give an example, we consider an iid sequence of
Rayleigh iid channel matrices. The empirical distribution of
the lower bound is very close to that of the true mutua
information down to about 10% outage levels for p = 20

2The exact supremum capecity for the given power constraint is Cisup =
K logy(1+ £%2), which is the capacity of K paralledl AWGN channels with

power gains =5t For p large, Csup =~ K logy(252). Note that we could
actually replace sup with max.
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Fig. 1. Empirical cdfs of (3) and its individual terms.

dB and n, = ny; = 2, see Fig. 1. When C}Qd happens to be

large and C,(JLLT is not too small, Cyy) can actualy exceed
Csup. However, it holds that E[Cy]| < Csyp, Which can be
seen from Jensen’s inequality and the concavity of log, |A| for
positive definite A. At high SNR, the decomposition (3) is a
good approximation for Cy(:) and can be used to examine the
mechanisms that affect the mutual information in more detail.

I11. STATISTICAL ANALYSISIN THE RAYLEIGH 11D CASE

In this section we analyze the case of Rayleigh iid H, i.e.
we assume the elements of the n, x n; matrix H are inde-
pendently distributed according to the complex, zero-mean,
circularly symmetric Gaussian distribution with unit variance.
The distribution of W is then complex Wishart with identity
covariance matrix, denoted here as W ~ CW(K, L), where
L = max(n,,n:). A collection of key results related to the
complex Wishart distribution can be found in [4, Appendix]
and in [13].

A. Satistical independence of Ctoq and Conux

For Rayleigh iid fading we have the following interesting
result.
Result 1: Let H be Rayleigh iid. Then C,,,. = Klog,y
and Craq = Klog, (|H||3) — K logy(KL) in (3) are statis-
tically independent.

Before proving the result we need the following theorem.

Theorem 1. Let W ~ CW(K, L), and m, beg?e geometric
) and m, =

my
Mg

mean of eigenvalues of W. Then 1% = (
+ tr(W) are independent.

Proof: The case of real-valued Wishart matrices has been
considered in [14] and [15]. The proof for the complex Wishart
pdf is similar, and due to space limitations we omit details

[16].
|

Using Theorem 1 the proof of Result 1 is easy.
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Proof: (Result 1) Note that Ctoq = K logy(mg) —
Klog,(L) and Cy,ue = K logy (), respectively, are functions
of m, and ~% only. Therefore, by Theorem 1, they are
statistically independent. [ ]

We note that if Result 1 was not true, the decomposition (2)
would be a sum of dependent terms, and as such, would be a
less descriptive characterization of mutual information under
Rayleigh iid fading.

B. Means and variances of C'yoq and Ciy,yz

Our main result is the following.
Result 2: Let H®) be Rayleigh iid. Then the means and
variances of C( ) and me in (3) are given by

E[CY))] = hﬁ[ (KL) - In(KL)], (4)
K—-1
ElC,] = % LS wir-n
k=0
—U(KL)+ 1n(K)] , 5)
) 2
wicfl] = (pg) VKD, ©)
2 K-1
var[C() 1 = (%) %Z\I}’(L—k)
k=0
\P’(KL)]- @

where \I/( ) = “L{In[T'(z)]} is the digamma function and
U'(z) = dazZ{ln[ ( )]} is the trigamma function.
Proof: We drop the index ¢ for convenience of notation.
We use the following results from [4]:

K-1

E[ln|W|] = (L — k), ®)
k=0
K-1

var [In|[W][] = Z\If (L—Fk). 9)

Eq. (4): In the Rayleigh iid case the distribution of ||H]||%
is complex Wishart distribution with parameters K = 1 and
L = n,ny. Hence, by (8),

E[m|H[3] =¥ (10)

(nTnt)?

and (4) follows.
Eq. (5): Since the geometric mean of the eigenvalues of W

ism, = [W|% and the arithmetic mean m, = +|H|%, we
can write
s - o i (2]

= %( E[ln [W|] — E[In || H|%] —HnK).

The first expectation is given directly by (8) and the second
was given in (10).

Eq. (6): Since the latter term in Croq = K log, |H||% —
K log,(n,n,) is constant, the variance of Cy,q is obtained
from (9) as

K o (KN,
var [m 111|H||F] = <E> v (KL)

Eqg. (7): Note that the variance of the whole lower bound
(2) must be equal to the variance of log, | .2 W | which can be
obtained directly by using (9). Since from Result 1 it follows
that Ctqq and C,,,,, are independent, and hence uncorrelated,
we must have

var [me} = var [logQ (nﬁwu — var[Cqd]
¢

and, after some manipulations, (7) results.

[ |

The means and variances in (4)—«7) have been plotted
in Figs. 2-5 as a function of n, and n,. We make some
observations:

o When the transmitter has no channel information and
the receiver knows H perfectly the ergodic capacity is
defined as E[Cy] [1]. In Result 2 we have decomposed
the effects of SNR fading and eigenvalue dispersion in
the ergodic capacity. From Fig. 2 we note that the mean
value of Cy.q is practically zero for even moderate K L.
Comparing to Fig. 3 confirms that the average eigenvalue
dispersion practically determines the ergodic capacity.

« From Fig. 3 we note that the capacity degradation due
to eigenvalue dispersion is largest when K = L. Thisis
natural since the eigenvalues are most dispersed in this
case. However, aready by increasing L from K to K +
1 results in considerable decrease in average eigenvalue
dispersion.

o In genera, the variance of C,,,, increases with K
extremely slowly for K large. However, for fixed K, the
variance decreases very sharply as L is made larger than
K. We dso note that the variances of Cy,y, and Cyqq
are of the same order for small values of K and L.

We emphasize that while many of the results just discussed
may appear intuitively clear, we have provided a forma
guantitative analysis of the issue at hand. In other words, we
have separated the effects of SNR and eigenvalue dispersion
on ergodic channel capacity and determines the degradation
caused by each of them, in bits/s/Hz.

IV. CONCLUSION

We have decomposed the mutual information at high SNR
as a sum of three terms that were interpreted as supremum
capacity, “fading gain”, and spatial multiplexing degradation.
We proved that the effects of SNR fading and eigenvalue dis-
persion (parameterized by the ratio of geometric and arithmetic
means of channel eigenvalues) on mutua information are
statistically independent under Rayleigh iid fading at the high
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Fig. 2. Mean of the instantaneous “fading gain” under Rayleigh iid fading.
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Fig. 3. Mean of Cyuz under Rayleigh iid fading.

SNR regime. Further, for the Rayleigh iid channel statistics
we computed the first and second order statistics of the terms
in the decomposition and provided some insights into the
characteristics of ergodic capacity and mutual information.

ACKNOWLEDGMENT

The authors would like to thank Nokia Research Center and
Academy of Finland for supporting this research. The first
and second author would also like to thank the Foundation of
Commercial and Technical Sciences and the Nokia foundation
for financial support.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels” European
Transactions on Telecommunications, vol. 10, no. 6, pp. 585-596,
November 1999.

[2] G. J. Foschini and M. J. Gans, “On the limits of wireless communica-
tions in a fading environment when using multiple antennas,” Wireless
Personal Communications, vol. 6, no. 3, pp. 311-335, March 1998.

[3] O. Oyman, R. Nabar, H. Bolcskei, and A. Paulraj, “Tight lower bounds
on the ergodic capacity of Rayleigh fading MIMO channels,” in Proc.
of GLOBECOM' 02, vol. 2, 2002, pp. 1172 —1176.

[4] A. Grant, “Rayleigh fading multiple-antenna channels,” EURASIP Jour-
nal on Applied Signal Processing, vol. 2002, no. 3, pp. 316-329, Mar.
2002.

[5] S. Loyka and A. Kouki, “New compound upper bound on MIMO
channel capacity,” IEEE Commun. Lett., vol. 6, no. 3, pp. 96-98, March
2002.

VARIANCE OF C
fad

var[C,_] [(bits/s/Hz)*]

Fig. 4. Variance of instantaneous “fading gain” under Rayleigh iid fading.

VARIANCE OF C
mu

X

o

IS

1 [(bits/siHz)?]

var[C
mux
N

N
S o

20

Fig. 5. Variance of Cjy,., under Rayleigh iid fading.

[6] M. Kiessling, J. Speiddl, I. Viering, and M. Reinhardt, “A closed-form
bound on correlated MIMO channel capacity,” in Proc. of VTC-2002-
Fall, vol. 2, 2002, pp. 24-28.

[7] E. Gauthier, A. Yongacoglu, and J.-Y. Chouinard, “Capacity of multiple
antenna systems in Rayleigh fading channels” in Proc. Canadian
Conference on Electrical and Computer Engineering, vol. 1, Halifax,
NS, Canada, Jul. 2000, pp. 275-279.

[8] H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels:
spatial fading correlation, double scattering, and keyhole,” |EEE Trans.
Inform. Theory, vol. 49, no. 10, pp. 2636 —2647, Oct. 2003.

[9] O. Oyman, R. Nabar, H. Bolcskei, and A. Paulraj, “ Characterizing the

statistical properties of mutual information in MIMO channels,” |IEEE

Trans. Sgnal Processing, vol. 51, no. 11, pp. 2784 —2795, Nov. 2003.

R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press,

1985.

T. Anderson, Introduction to Multivariate Statistical Analysis, 2nd ed.

John Wiley Inc, 1984.

M. Wax and T. Kailath, “Detection of signals by information theoretic

criteria” |EEE Trans. Acoust., Speech, Signal Processing, vol. 33, no. 2,

pp. 387-392, April 1985.

[13] T. Ratnargjah, R. Vaillancourt, and M. Alvo, “Complex random matrices

and Rayleigh channel capacity,” Communications in Information and

Systems, vol. 3, no. 2, pp. 119-138, Oct. 2003.

R. Muirhead, Aspects of Multivariate Satistical Theory. John Wiley

and Sons, Inc., 1982.

[15] A. Gupta and D. Nagar, Matrix Variate Distributions. Chapman and

Hall/CRC, 2000.

[16] J. Salo, P. Suvikunnas, H. El-Sallabi, and P. Vainikainen, “ Some results

on MIMO capacity: the high SNR case” 2004, to be submitted.

[10]
(1]

[12]

[14]


pvainikai
6th IEEE Nordic Signal Processing Symposium, Espoo, Finland, June 9-11, 2004




