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Abstract— We consider a Multiple-Input Multiple-Output
(MIMO) communication system where the transmitted vector has
a Gaussian distribution with (scaled) identity correlation matrix;
this is the capacity-achieving channel input distribution for a
block fading Rayleigh iid MIMO channel when the transmitter
has no channel knowledge and the receiver knows the channel
perfectly. We decompose a high-SNR approximation of the
mutual information as a sum of three terms involving: i) a
supremum capacity; ii) the effect of fluctuation of SNR about
its mean; iii) the effect of eigenvalue dispersion of the channel.
The decomposition provides some insight on the mechanisms that
affect the MIMO mutual information at high SNR. Further, we
analyze the first and second order statistics of the terms in the
decomposition under the assumption of frequency-flat Rayleigh
iid fading.

I. INTRODUCTION

The enormous capacity of MIMO communication channels
has spurred an avalanche of research on different aspects
of multi-antenna radio communications [1] [2]. Some of the
recent research has concentrated on analysis of first order
statistics of MIMO mutual information (i.e., ergodic capacity)
under Rayleigh fading channel statistics, see e.g. [3]–[8].

Our focus here is on the simple capacity lower bound
analyzed by Grant and Gauthier et al [4] [7]. Our purpose is
not to derive new bounds but instead to decompose the Grant-
Gauthier lower bound into a form that provides us with some
insight into the structure of the mutual information at high
SNR. Our results are closely related to those in [9], where the
statistics of mutual information were characterized in terms of
first and second order statistics. The contribution of this paper
is to extend the analysis therein to the SNR and eigenvalue
dispersion dependent components of the mutual information.

The paper is organized as follows. In Section II we introduce
some basic concepts and rewrite the Grant-Gauthier lower
bound as a sum of three terms that form the mutual information
“decomposition”. In Section III we compute the means and
variances of the terms of the decomposition in the Rayleigh
iid fading case. Some illustrative graphs are provided to
accompany the analytical results. Section IV concludes the
paper.

II. A DECOMPOSED LOWER BOUND FOR MIMO CAPACITY

A. Basic assumptions and definitions

We consider a MIMO system with nt transmit and nr re-
ceive antennas. Assume that the transmitter signal distribution
is complex Gaussian with correlation matrix P

nt
Int

, where P

is the total transmitted signal power. Then, for a given nr×nt

channel matrix H, the MIMO mutual information is [1], [2]

CH = log2

∣∣∣∣Inr
+

ρ

nt
HHH

∣∣∣∣ , (1)

where ρ is the average SNR at the output of each of the nr

receiver sensors. Complex additive white Gaussian noise, iid
in spatial and time domains, is assumed throughout the paper.

Assuming that the receiver knows the fixed, nonrandom H
perfectly and that the transmitter has no knowledge of it, CH is
the maximum of mutual information, i.e. the channel capacity
associated with H.

B. Decomposed Grant-Gauthier lower bound

Motivated by |I + AB| = |I + BA|, and the inequality
|I + A| > |A| (for positive definite A), we define

W =
{
HHH , if nr ≤ nt

HHH , if nr > nt .

and consequently lower bound (1) as CH > log2 | ρ
nt

W|.
This is the Grant-Gauthier lower bound [4] [7].

Note that the tighter Minkowski determinant inequality [10,
p. 482] could also be applied here, as in [3]. However, at the
high SNR region, this would lead us to the same end result in
our upcoming development.

Consider an ergodic sequence of channel matrices,
{H(i), i = 1, 2, . . . }. This is the block fading model. Denote
K = min(nr, nt). We adopt the usual power normalization
E
[‖H(i)‖2

F

]
= E

[∑K
k=1 λ

(i)
k

]
= nrnt, and {λ(i)

k , k =
1, . . . ,K} are the eigenvalues1 of W(i).

Denote m
(i)
a = 1

K

∑nr

k=1 λ
(i)
k and ma = E

[
m

(i)
a

]
. The

lower bound may be written as

CH(i) > log2

∣∣∣ ρ

nt
W(i)

∣∣∣
= log2

[(
ρ

nt

nrnt

Kma

)K K∏
k=1

λ
(i)
k

]

= log2

[(
ρ

nt

nrnt

K

)K(
m

(i)
a

ma

)K(
m

(i)
g

m
(i)
a

)K]

1We neglect the pathological cases (e.g. keyhole) where rank[W(i)] < K,
or, rather, assume that probability of such an event is vanishingly small.
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= K log2

(ρnr

K

)
+ K log2

(m
(i)
a

ma

)
+K log2(γ

(i)), (2)

where m
(i)
g =

(∏K
k=1 λ

(i)
k

)1/K
is the geometric mean of

the eigenvalues of W(i) and γ(i) = m
(i)
g /m

(i)
a is the ratio of

their geometric and arithmetic means, which is a well-known
measure of sphericity in multivariate statistic [11, p. 427].
Interestingly, the same parameter also arises in the likelihood
term of several model order estimators used in array signal
processing [12]. It provides a natural scale-invariant (wrt ρ)
measure for the dispersion of the channel eigenvalues. Note
that 0 ≤ γ(i) ≤ 1, where the maximum value is attained when
all eigenvalues are equal, i.e. the case of K parallel AWGN
channels.

The decomposition (2) admits an intuitively appealing inter-
pretation. The first term of (2) is a lower bound of supremum
capacity2 for the set of channel matrices S = {H : ‖H‖2

F ≤
ntnr}. Here we define Csup = supH∈S CH. The second term
is the effect of instantaneous SNR normalized by its mean. The
third term measures the instantaneous capacity degradation
from the supremum due to eigenvalue dispersion (note that
this term is always non-positive); this may be interpreted as
the efficiency of spatial multiplexing. Therefore, we interpret
the mutual information as a sum of three terms and write (2)
as

CH(i) > Csup + C
(i)
fad + C(i)

mux. (3)

We stress that in (3) we have separated the effects of SNR
(both average and instantaneous) and eigenvalue dispersion on
the mutual information. The only statistical assumption made
so far is the average power gain constraint on H.

Note that the “fading gain” term may also be written as

C
(i)
fad = K log2

( ‖H(i)‖2
F

E
[‖H(i)‖2

F

]),

which perhaps better illustrates its role as the instantaneous
capacity gain (or loss) due to instantaneous SNR fading
defined as the sum of the power gains of the ntnr paths.

Let Y = log2 | ρ
nt

W|. For ρ/nt large, the lower bound (2)
is tight in the sense that, for fixed nr and nt, limρ→∞(CH −
Y ) = 0 for any positive definite W. Hence by selecting ρ
large enough we can make (3) an accurate approximation of
the mutual information. It can be shown that the smallest
eigenvalue dominates the error of the bound and hence the
bound is not tight if one or more of the eigenvalues are in the
order of nt

ρ or less.
To give an example, we consider an iid sequence of

Rayleigh iid channel matrices. The empirical distribution of
the lower bound is very close to that of the true mutual
information down to about 10% outage levels for ρ = 20

2The exact supremum capacity for the given power constraint is Csup =
K log2(1+ ρnr

K
), which is the capacity of K parallel AWGN channels with

power gains nrnt
K

. For ρ large, Csup ≈ K log2( ρnr
K

). Note that we could
actually replace sup with max.
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Fig. 1. Empirical cdfs of (3) and its individual terms.

dB and nr = nt = 2, see Fig. 1. When C
(i)
fad happens to be

large and C
(i)
mux is not too small, CH(i) can actually exceed

Csup. However, it holds that E[CH(i) ] < Csup, which can be
seen from Jensen’s inequality and the concavity of log2 |A| for
positive definite A. At high SNR, the decomposition (3) is a
good approximation for CH(i) and can be used to examine the
mechanisms that affect the mutual information in more detail.

III. STATISTICAL ANALYSIS IN THE RAYLEIGH IID CASE

In this section we analyze the case of Rayleigh iid H, i.e.
we assume the elements of the nr × nt matrix H are inde-
pendently distributed according to the complex, zero-mean,
circularly symmetric Gaussian distribution with unit variance.
The distribution of W is then complex Wishart with identity
covariance matrix, denoted here as W ∼ CW(K,L), where
L = max(nr, nt). A collection of key results related to the
complex Wishart distribution can be found in [4, Appendix]
and in [13].

A. Statistical independence of Cfad and Cmux

For Rayleigh iid fading we have the following interesting
result.

Result 1: Let H be Rayleigh iid. Then Cmux = K log2 γ
and Cfad = K log2

(‖H‖2
F ) − K log2(KL) in (3) are statis-

tically independent.
Before proving the result we need the following theorem.
Theorem 1: Let W ∼ CW(K,L), and mg be the geometric

mean of eigenvalues of W. Then γK =
(

mg

ma

)K

and ma =
1
K tr(W) are independent.

Proof: The case of real-valued Wishart matrices has been
considered in [14] and [15]. The proof for the complex Wishart
pdf is similar, and due to space limitations we omit details
[16].

Using Theorem 1 the proof of Result 1 is easy.
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Proof: (Result 1) Note that Cfad = K log2(ma) −
K log2(L) and Cmux = K log2(γ), respectively, are functions
of ma and γK only. Therefore, by Theorem 1, they are
statistically independent.

We note that if Result 1 was not true, the decomposition (2)
would be a sum of dependent terms, and as such, would be a
less descriptive characterization of mutual information under
Rayleigh iid fading.

B. Means and variances of Cfad and Cmux

Our main result is the following.
Result 2: Let H(i) be Rayleigh iid. Then the means and

variances of C
(i)
fad and C

(i)
mux in (3) are given by

E[C(i)
fad] =

K

ln 2
[
Ψ(KL) − ln(KL)

]
, (4)

E[C(i)
mux] =

K

ln 2

[
1
K

K−1∑
k=0

Ψ(L − k)

−Ψ(KL) + ln(K)

]
, (5)

var[C(i)
fad] =

(
K

ln 2

)2

Ψ′(KL), (6)

var[C(i)
mux] =

(
K

ln 2

)2
[

1
K2

K−1∑
k=0

Ψ′(L − k)

−Ψ′(KL)

]
. (7)

where Ψ(x) = d
dx{ln[Γ(x)]} is the digamma function and

Ψ′(x) = d2

dx2 {ln[Γ(x)]} is the trigamma function.
Proof: We drop the index i for convenience of notation.

We use the following results from [4]:

E
[
ln
∣∣W∣∣] =

K−1∑
k=0

Ψ(L − k), (8)

var
[
ln
∣∣W∣∣] =

K−1∑
k=0

Ψ′(L − k) . (9)

Eq. (4): In the Rayleigh iid case the distribution of ‖H‖2
F

is complex Wishart distribution with parameters K = 1 and
L = nrnt. Hence, by (8),

E
[
ln ‖H‖2

F

]
= Ψ(nrnt), (10)

and (4) follows.
Eq. (5): Since the geometric mean of the eigenvalues of W

is mg = |W| 1
K and the arithmetic mean ma = 1

K ‖H‖2
F , we

can write

E [Cmux] = E

[
K log2

(
mg

ma

)]

=
K

ln 2

(
1
K

E[ln |W|] − E[ln ‖H‖2
F ] + lnK

)
.

The first expectation is given directly by (8) and the second
was given in (10).

Eq. (6): Since the latter term in Cfad = K log2 ‖H‖2
F −

K log2(nrnt) is constant, the variance of Cfad is obtained
from (9) as

var

[
K

ln 2
ln ‖H‖2

F

]
=
(

K

ln 2

)2

Ψ′(KL).

Eq. (7): Note that the variance of the whole lower bound
(2) must be equal to the variance of log2

∣∣ ρ
nt

W
∣∣ which can be

obtained directly by using (9). Since from Result 1 it follows
that Cfad and Cmux are independent, and hence uncorrelated,
we must have

var
[
Cmux

]
= var

[
log2

∣∣∣ ρ

nt
W
∣∣∣]− var[Cfad]

and, after some manipulations, (7) results.

The means and variances in (4)–(7) have been plotted
in Figs. 2–5 as a function of nt and nr. We make some
observations:

• When the transmitter has no channel information and
the receiver knows H perfectly the ergodic capacity is
defined as E[CH] [1]. In Result 2 we have decomposed
the effects of SNR fading and eigenvalue dispersion in
the ergodic capacity. From Fig. 2 we note that the mean
value of Cfad is practically zero for even moderate KL.
Comparing to Fig. 3 confirms that the average eigenvalue
dispersion practically determines the ergodic capacity.

• From Fig. 3 we note that the capacity degradation due
to eigenvalue dispersion is largest when K = L. This is
natural since the eigenvalues are most dispersed in this
case. However, already by increasing L from K to K +
1 results in considerable decrease in average eigenvalue
dispersion.

• In general, the variance of Cmux increases with K
extremely slowly for K large. However, for fixed K, the
variance decreases very sharply as L is made larger than
K. We also note that the variances of Cmux and Cfad

are of the same order for small values of K and L.

We emphasize that while many of the results just discussed
may appear intuitively clear, we have provided a formal
quantitative analysis of the issue at hand. In other words, we
have separated the effects of SNR and eigenvalue dispersion
on ergodic channel capacity and determines the degradation
caused by each of them, in bits/s/Hz.

IV. CONCLUSION

We have decomposed the mutual information at high SNR
as a sum of three terms that were interpreted as supremum
capacity, “fading gain”, and spatial multiplexing degradation.
We proved that the effects of SNR fading and eigenvalue dis-
persion (parameterized by the ratio of geometric and arithmetic
means of channel eigenvalues) on mutual information are
statistically independent under Rayleigh iid fading at the high
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Fig. 2. Mean of the instantaneous “fading gain” under Rayleigh iid fading.
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Fig. 3. Mean of Cmux under Rayleigh iid fading.

SNR regime. Further, for the Rayleigh iid channel statistics
we computed the first and second order statistics of the terms
in the decomposition and provided some insights into the
characteristics of ergodic capacity and mutual information.
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