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Main topics today
• Some general properties of metamaterials
• Artificial magnetics
• New high-impedance surfaces
• Antennas in metamaterial shells
• Antenna miniaturization
• Near-field control
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Energy density
Considering metamaterials with negligible losses (in some frequency
ranges):

w =
1

2

d(ωε(ω))

dω

∣∣∣∣
ω=ω0

|E|2 +
1

2

d(ωµ(ω))

dω

∣∣∣∣
ω=ω0

|H|2

Assume that ε and µ are independent from the frequency (near ω0):

w =
1

2
ε(ω0)|E|2 +

1

2
µ(ω0)|H|2

But w > 0 in passive media!

Conclusion: It is not possible to neglect dispersion if the material
parameters are negative.
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Limitations on material parameters

Again for low-loss materials:

dε(ω)

dω
> 0,

dε(ω)

dω
>

2(ε0 − ε)

ω

From here:

d(ωε(ω))

dω
> ε0,

d(ωµ(ω))

dω
> µ0

Also,

d(ωε(ω))

dω
> 2ε0 − ε(ω)
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On modelling of magnetics

µ = µ0

(
1 +

Aω2

ω2
0 − ω2

)

OK at low frequencies [µ(ω) = O(ω2)] and near the resonance, but
non-physical at high frequencies!

Condition
d(ωµ(ω))

dω
> µ0

breaks down at ω >
√

3ω0.
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On the non-dispersive model

Connect V = V0 sin(ωt) at time t = 0:

i(t) = V0ωC
cos(ωt) + ωRC sin(ωt) − e−

t
RC

1 + ω2R2C2

Exponentially grows if C < 0!
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What really happens?

ε(ω) = ε0εr = ε0

(
1 − ω2

p

ω2

)

Z =
1

jωC
=

1

jωC0

(
1 − ω2

p

ω2

)
No instabilities! And no exotic response!
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Artificial magnetic materials

(a) Single split-ring resonator. (b) Split-ring resonator (SRR). (c)
Modified split-ring resonator (MSRR) (d) Cross section of the Swiss
roll.
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Metasolenoid

Two examples of alternative geometries of the metasolenoid.
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Artificial impedance surfaces
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Cross section of the structure

“Mushroom layer” New HIS — artificial magnetic layer
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On metamaterial coverings
Question: How thin (meta)material coverings influence antenna
performance? (Is it possible to reduce the size and increase the
bandwidth?)
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Example: Infinite current line

Thin infinite metal cylinder, radius r0, with a given time-harmonic
current I.
The source is covered by a material cylinder of radius a � λ (r0 � a).

April 20, 2005 12



AB HELSINKI UNIVERSITY OF TECHNOLOGY

SMARAD Centre of Excellence

Electric and magnetic fields
The electric field:{

Ez = AH
(2)
0 (kr) + BH

(1)
0 (kr), r0 ≤ r ≤ a,

Ez = CH
(2)
0 (k0r), r ≥ a

The magnetic field:

Hϕ = − j

ωµ

∂Ez

∂r
=

⎧⎪⎪⎨
⎪⎪⎩

jk

ωµ

(
AH

(2)
1 (kr) + BH

(1)
1 (kr)

)
, r0 ≤ r ≤ a

jk0

ωµ0
CH

(2)
1 (k0r), r ≥ a
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Boundary conditions
Continuity conditions for Ez and Hϕ:

AH
(2)
0 (ka) + BH

(1)
0 (ka) = CH

(2)
0 (k0a)

µ0k

µk0

(
AH

(2)
1 (ka) + BH

(1)
1 (ka)

)
= CH

(2)
1 (k0a)

Relation between the wire current I and the magnetic field Hϕ at the
wire surface r = r0: 2πr0Hϕ = I, thus

2πj kr0

ωµ

(
AH

(2)
1 (kr0) + BH

(1)
1 (kr0)

)
= I

April 20, 2005 14

AB HELSINKI UNIVERSITY OF TECHNOLOGY

SMARAD Centre of Excellence

Assumptions and solution
Assumptions: k0a � 1, |k|a � 1, r0 � a ⇒ the solution is

A = −ωI

8

{
µ0 + µ +

2j

π

[
µ log

γka

2
− µ0 log

γk0a

2

]}

B = −ωI

8

{
µ0 − µ +

2j

π

[
µ log

γka

2
− µ0 log

γk0a

2

]}

C = −ωµ0I

4

(γ ≈ 1.781 is the Euler constant)
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Impedance per unit length
The quality factor we define as usually:

Q =
ωW

P

where W is the average reactive energy stored in the resonator and P
is the total dissipated power.

To evaluate this, we introduce the wire impedance per unit length

Z = −Ez(r0)

I

Z =
ωµ0

4
+ j

ω

2π

[
µ0 log

4

γk0r0
+ (µ − µ0) log

a

r0

]
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Lossless covering material
Consider exponentially growing (or decaying) amplitude of harmonic
oscillations. Complex frequency Ω = ω − jα, α � ω:

∂W

∂t
≈ 2αW

Z(Ω) = R(Ω) + jX(Ω) ≈ R(ω) + α
∂X(ω)

∂ω
+ j

[
X(ω) − α

∂R(ω)

∂ω

]

On the other hand,

∂W

∂t
= (Re[Z(Ω)] − Rrad) |I|2 = α

∂X(ω)

∂ω
|I|2
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Antenna quality factor

W =
1

2

∂X(ω)

∂ω
|I|2

Q =
ωW

P
=

ω

2Rrad

∂X(ω)

∂ω

Q =
1

π

{
∂(ωµr)

∂ω
log

a

r0
+ log

4

γk0a
− 1

}

But we know that
∂(ωµr)

∂ω
≥ 1

!
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Lossy and dispersive covers
The quality factor can be found only if we know the internal structure of
the system.

Assume a magnetic modelled by

µ = µ0

(
1 +

Aω2

ω2
0 − ω2 + jωΓ

)

Then
Z = Zwire + Zmedium

Zwire =
ωµ0

4
+ j

ωµ0

2π
log

4

γk0r0
, Zmedium = j

ω

2π
(µ − µ0) log

a

r0
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Equivalent circuit

� �

��
�

�

Zmaterial =
jω3(M2/L)

ω2
0 − ω2 + jω(R/L)

with ω0 = 1/
√

LC
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Stored energy and loss power

Wmedium = L
|IL|2

2
+ C

|UC |2
2

=
ω2M2C(1 + ω2LC)

(1 − ω2LC)2 + ω2R2C2

|I|2
2

At the resonant frequency

Wmedium(ω0) =
M2|I|2
R2C

Ploss = R|IL|2 =
ω4M2C2R|I|2

(1 − ω2LC)2 + ω2R2C2

Ploss(ω0) =
ω2

0M2|I|2
R
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Efficiency and quality factor

η =
Prad

Prad + Ploss
=

1

1 +
4ω0M

2

µ0R

Qtotal =
ω(Wwire + Wmedium)

Prad + Ploss

=
1

1 +
4ω0M

2

µ0R

[
1

π

(
log

4

γk0r0
− 1

)
+

4M2

µ0R2C

]

Qtotal =
1

1 +
2ω0A

πΓ
log

a

r0

[
1

π

(
log

4

γk0r0
− 1

)
+

2ω2
0A

πΓ2
log

a

r0

]
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Limiting cases
1. Small losses (R → 0):

Qtotal =
1

ω0RC

(most of the energy is stored in the medium layer and almost all the
power goes into heat)

2. Fixed efficiency (R), the resonant frequency and the coupling. To
decrease Qtotal we increase C → ∞. This means L → 0. The total
impedance of a medium particle is simply resistive:

Zmedium =
ω2

0M2

R
, and Qtotal = ηQwire
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Discussion I
No passive media in thermodynamic equilibrium can store negative
reactive energy

Field instabilities take place in non-equilibrium systems that can be
described by negative energy density

April 20, 2005 24



AB HELSINKI UNIVERSITY OF TECHNOLOGY

SMARAD Centre of Excellence

Discussion II
The use of (low-loss) Veselago materials does not allow to realize
negative capacitance or negative inductance.

Such "negative capacitor" made of a wire medium is equivalent to a
parallel connection of a normal capacitor and a normal inductor.
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Discussion III
Veselago material shells around an antenna "increase radiated power"
(R. Ziolkowski) as well as shells of usual materials
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What can work?
• Radiating inclusions, instead of material coverings. Increase of the

stored reactive energy can be overcompensated by an increase of
the radiated power.

• Shells of resonant dimensions. New materials can offer more
possibilities in optimizing resonant antennas.

• Non-uniform coverings or material inclusions. This can modify the
current distribution, possibly leading to increased bandwidth.

• Active materials. If the passivity requirement is dropped, it is in
principle possible to overcome the limitation

∂(ωµr)

∂ω
≥ 1

without introducing heavy losses. The bandwidth can be very large
for very small antennas.
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Antenna miniaturization
For resonant antennas like microstrip antennas and PIFAs, the main
idea is to fill them with a magnetic:

Fr ∼ 1√
εrµr

, BW ∼
√

µr√
εr

Figure of merit?

Q >
1

(k0a)3
(k0a � 1)

a) QV should be minimized

or b) QF 3
res should be minimized
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Numerical model

19 mm

19 mm

2.4 mm

5.9 mm

7 mm

material
filling

x

yz

short feed

µ(ω) = µ0

(
1 +

∆µω2
0m

ω2
0m − ω2 + jδmω

)
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Numerical results
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Experiments: Filled PIFA

Filling metamaterial — sets of metasolenoids

a b w g d εr

mm mm mm mm mm

3.5 3.5 0.4 1.0 0.127 2.20 - j0.002 †
† εr is the permittivity of the host substrate.
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Experiments: Filled PIFA
Two possible regimes: Resonant inclusions or non-resonant magnetic
filling
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Resonant inclusions
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Metamaterial filling
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Measured parameters
Resonant inclusions

Loading Fres BW

�

�

�

�

�

−6dB

BW

�

�

�

�

�

−9.5dB

η Q0 Q0F 3
res

GHz percent percent percent

Air 1.30 4.5 2.7 94 27.2 59.8

Reference blocks 1.29 4.4 2.6 93 27.6 59.3

Metasolenoids 1.26 5.4 4.3 90, 90, 88 † 22.1 45.8
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Measured parameters
Metamaterial filling

Loading Fres BW

�

�
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−6dB

BW

�

�

�

�

�

−9.5dB

η Q0 Q0Fres
3

GHz percent percent percent

Air 1.05 3.6 2.2 84 34.3 40.2

Reference blocks 0.95 2.5 1.5 74 51.0 43.2

Metasolenoids 0.86 2.2 1.3 70 59.4 37.8
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Microstrip antennas
Calculated results:

�

� � � � �

� � � 	 
 � � � 
 � 
 �
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Microstrip antennas
Measured results:
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Near field control

Et = Zsn × H = ηZsn × H =
η

Ys

n × H

Zs = Zs/η, Ys = Ysη, η =
√

µ0/ε0

h

h

n

ζ

z

θ

to the observation 

point (distance r)

impedance

surface

antenna
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Exact image theory

Ii = δ+(ζ)I − 2jkYse
−jYskζU+(ζ)I

The total field in the far zone:

E = − ηk√
8π

ejπ/4

{
e−jk(r−h cos θ)√
k(r − h cos θ)

+
e−jk(r+h cos θ)√
k(r + h cos θ)

−2jkYs

∞∫
0

e−jk[Ysζ+r+(h+ζ) cos θ]√
k[r + (h + ζ) cos θ]

dζ

⎫⎬
⎭ I

The integral converges if

Im{Ys} < 0 or Im{Zs} > 0 (positive reactance)
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Far-field pattern

F (θ) =

∣∣∣∣1 +
cos θ − Ys

cos θ + Ys

e−2jkh cos θ

∣∣∣∣
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Near-field pattern

E = −ηk

4

[
H

(2)
0

(
k
√

r2 − 2rh cos θ + h2
)

+H
(2)
0

(
k
√

r2 + 2rh cos θ + h2
)
− 2jYsG

]
I

where

G =

∞∫
0

e−jYsζH
(2)
0

(√
(kr cos θ + kh + ζ)2 + (kr sin θ)2

)
dζ

The field pattern:

F (kr, θ) = 1 +
H

(2)
0

(√
(kr)2 + 2k2rh cos θ + (kh)2

)
− 2jYsG

H
(2)
0

(√
(kr)2 − 2k2rh cos θ + (kh)2

)
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Numerical example
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Compromise: Moderate inductive surface impedance
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Experimental set-up
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Near field distributions

Electric field Magnetic field
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Local screening effect (LSE)

LSE = the ratio (in dB) between the field amplitudes at two points
located in front (z > 5 mm) and behind (z < −45 mm) the antenna
structure

The averaged screening effect (ASE) = the averaged value of LSE over
these two planes

For the mushroom structure ASE is approximately equal to 15 dB for
electric fields and 20 dB for magnetic fields.
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Full-sized folded dipole
over a mushroom layer with a moderate inductive surface impedance
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Near-field distibutions

Electric field Magnetic field
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Main antenna parameters

Metal Mushrooms Jerusalem
plate crosses

Central frequency, GHz 1.81 1.77 1.83

Radiation efficiency, % 76 73 88

Total thickness H, mm 9.35 8.3 12.3

Bandwidth, % – 5.5 (−9.5 dB) 4 (−10 dB)

Electric field ASE, dB 15 13 15

Magnetic field ASE, dB 15–17 12–13 13–15
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