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1. Introduction 
The present report describes the activities carried out in WP2.3-2, 
Reflector Surface Models, in the last year of ACE1. The report is 
organised in the following eight chapters where the name of the 
contributing organisation is given in parentheses: 

1. Introduction (TICRA) 

2. Range of validity of boundary conditions obtained by 
homogenization method (Chalmers) 

3. Range of validity of canonical homogenised problems 
and 
Effects of manufacturing tolerances (Univ. Lund) 

4. Test case, Multi-layer frequency selective surface,  
Parametric analysis of the effects of manufacturing tol-
erances (TNO) 

5. Effects from manufacturing tolerances (POLITO) 

6. Fast approximate methods compared to rigorous solu-
tions (TICRA) 

7. The Pole-Zero Matching Method applied to the fre-
quency selective radome (univ. Siena) 

Homogenisation problems are dealt with in both chapters 2 and 3. 
The general idea is to replace the original inhomogeneous me-
dium with a homogeneous one with the same electromagnetic 
properties. In chapter 2 the method is applied to a two-
dimensional strip grid and it is demonstrated that the approach 
works well, not only for planar structures, but also for cylindrical 
structures with diameters of only a few wavelengths. 

The general homogenisation for three-dimensional media are de-
scribed in the first half of chapter 3 and it is indicated under 
which conditions the equivalent homogeneous material exists. 

The second half of chapter 3 deals with the influence of manufac-
turing tolerances which is also the subject of chapters 4 and 5. In 
chapter 3 the investigation is concentrated to a frequency selec-
tive (FSS) radome and in chapter 4 a planar FSS test case is in-
vestigated, both numerically and experimentally. In chapter 5 the 
misalignment of the elements forming the FSS grid is examined. 
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Chapter 6 is devoted to strip grids and gives a comparison be-
tween fast, but approximate formulas and rigorous results ob-
tained by Moment Methods. It is concluded that the simple formu-
las work very well in general, but when the strip grid is located 
very close to a dielectric interface unacceptable errors show up. 

Chapter 7 describes the preliminary work of a new method, the 
Pole-Zero Matching (PZM) Method. The general idea is to develop 
intelligent interpolation techniques such that rigorous, but CPU-
time heavy, results can be implemented in realistic and fast opti-
misation procedures. One example is the PZM where the compli-
cated frequency dependence of frequency selective surfaces is ap-
proximated by a simple rational function. 
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2. Range of validity of boundary conditions 
obtained by homogenization method 

 

 

2.1 Planar structures  
 
Analysis method: Strip gratings are well known for their polarization properties. Inci-
dent waves with the electric field parallel to the strips are mainly reflected, and waves 
with the electric field orthogonal to the strips mainly pass through the grating. In the 
present section we discuss the accuracy of two approximate boundary conditions which 
implementation significantly simplify the analysis of structures with strips. We consider 
strip gratings located in free space or placed on dielectric slab (Fig. 1). The analysis can 
be easily extended for strips located between any two layers inside cylindrical multi-
layer structures. Furthermore, we are interested in both planar and curved structures. As 
a canonical example of curved structures, strips located on dielectric cylinder are ana-
lyzed. 
 
The rigorous analysis of periodic strips inside a multilayer structure is performed by ex-
panding the currents on the strips in basis functions, and the amplitudes of the basis 
functions are determined numerically by the moment method (MoM) [1]. The electro-
magnetic field is in the form of Floquet modes due to the periodicity of the structure. It 
is sufficient to determine the current on one strip, since the currents on the other strips 
are identical except for a phase difference. 
 
If the source excites a full spectrum of plane waves, such as a dipole, the Floquet-mode 
expansion/MoM is a laborious process. A simpler approach is to use approximate 
boundary conditions. We have used two types of approximate boundary conditions: the 
asymptotic strip boundary conditions (ASBC) [2], [3] which in the planar case corre-
spond to modeling the strips as a unidirectional conducting screen [4], and boundary 
conditions obtained by the homogenization method (BCHM).  
 
The ASBC are applied to the components of the electromagnetic field that are tangential 
to the interface which contains the strips. The electric field component parallel to the 
strips is zero at the strip surface, and the component orthogonal to the strips is continu-
ous across the surface. For the magnetic field it is sufficient to consider the component 
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parallel to the strips, which is continuous across the surface. The orthogonal component 
is discontinuous by the amplitude of the strip current, which comes out as a result of the 
analysis. For y-directed strips the ASBC are  

0=+
yE , 0=−

yE ,                                                          (1a) 
−+ = xx EE , 

−+ = yy HH ,                                                      (1b) 
where superscripts + and - denote the E- and H-fields and permittivity/permeability 
above and below the strips, respectively. 
 
BCHM are obtained by averaging the fields of the fundamental Floquet mode [5]. The 
zero-order boundary conditions correspond to ASBC, and the first-order boundary con-
ditions include the periodicity and the width of the strips. For example, for y-directed 
strips we have 

−+ = xx EE ,    −+ = yy EE ,                                                           (2a) 
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Parameters le and lh are defined by 

l
P W

Pe = π
π

lncsc
2 ,    l

P W
Ph = π

π
lnsec

2  ,                                          (3) 

where P and W are the periodicity and the width of the strips (Fig. 1). Notice that 
BCHM are more complicate to implement since the normal components of the electro-
magnetic field is also included in BCHM, which was not the case for ASBC. Further-
more, the ASBC can be obtained from BCHM by letting P → 0 and by keeping the ratio 
P/W constant. 
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Figure 1. Geometry and coordinates of strip grids on a planar dielectric slab (up) and on 
dielectric cylinder with circular cross-section (down). The analysis in the present paper 
can also treat strip grids located inside multilayer planar and cylindrical structures. 

 
Results: We consider here a planar strip grid, and we calculate the reflection coefficient 
for different strip widths, strip periodicities and angles of incidence. First we analyze 
the case when the strips are y-directed (see Fig. 1) and the incident wave is propagating 
orthogonal to the strips (φinc = 00). Fig. 2 shows the results for the case when the strip 
grid is in the free-space and we vary the strip period (the width of the strips is W/P = 
0.25 λ0  and θinc is a parameter). The results show that the ASBC act as a PEC plane or 
as a completely transparent surface, depending on polarization. The MoM results ap-
proach asymptotically the results obtained by the ASBC method when the strip periods 
decrease. Furthermore, the ASBC are better closer to grazing incidence. The compari-
son of the BCHM and the MoM results for the same case is given in Fig.3. It can be 
seen that the BCHM results are almost identical to the MoM results. However, the 
BCHM are harder to implement.   
 
The strip-loaded grounded dielectric slab can be used as a soft surface, i.e. as a surface 
for which the reflection coefficient is independent of polarization: ΓTE = ΓTM = -1 [6]. 
Fig. 4 shows the dependence of the phase of the reflection coefficient on frequency 
when the strip width is parameter. The relative permittivity of the substrate is εr = 2.5 
and the strip periodicity P is equal to the thickness of the slab d,  P = d.  As  in  the  
previous example  the incident wave is propagating orthogonal  to the strips (φinc = 00). 
The results again show that the MoM results approach the ones obtained by ASBC 
when the periodicity goes to zero for all relative strip widths. In the case of TEz incident 
wave, when the strips act like a PEC plane, the ASBC are a better approximation the 
wider the strips are, and in the TMz case the narrower the strips are. The MoM results 
also show a fast change of phase for the TEz case when the thickness of the slab is 
around d = 0.32 λ0 and the strip width is small compared to the period.  We explain this 
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as excitation of a parallel-plate TEz waveguide mode in the strip-loaded dielectric slab, 
having a cosine field distribution between the ground plane and the strip grating. The 
ASBC cannot predict such resonance-like phenomena. Here we did not present the 
BCHM results since they are almost identical to the MoM ones. 
 

 
 

Figure 2. Absolute value of the reflection coefficient of a planar y-directed strip grid for 
transverse incidence for W/P = 0.25. 
 
 

 

Figure 3. Absolute value of the reflection coefficient of a planar y-directed strip grid for 
transverse incidence for W/P = 0.25. 
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Figure 4. Phase of reflected field from a grounded dielectric slab loaded with y-directed 
periodic strips. θinc = 750, φinc = 00, εr = 2.5, P = d. 
 
 

2.2 Curved structures  
 
In the BCHM case we have used a local planar approximation, that means we suppose 
that the surface where the strips are located is locally a plane surface. By this we can 
easily transform the boundary conditions from the rectangular coordinate system [5] to 
the cylindrical one. For example, for ϕ-directed strips we have 
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The ASBC are more general, and they do not depend on the geometry. Theoretically, 
the surface with the strips can be of any shape, and the strips can be nonperiodical pro-
vided that the distance between strips is small enough. For ϕ-directed strips the ASBC 
are  
 

Eφ
+ = 0 , Eφ

− = 0 ,                                                         (5a) 

E Ez z
+ −= , H Hφ φ

+ −= .                                                      (5b) 
 
Fig. 5 shows the calculated scattered field from the dielectric cylinder loaded with peri-
odic circumferential strips. The results are obtained by the MoM (accurate results), and 
by the ASBC and the BCHM methods. The radius and the relative permittivity of the 
cylinder are ρ = 1.2 cm and εr = 2.1. The frequency is 10 GHz, and the periodicity and 
the width of the strips are P = 0.8 cm and W = 0.3 cm, i.e.0.27 λ0 and 0.1 λ0, respec-
tively. The incident wave is TMz polarized, and angle of incidence is θinc = 900 (normal 
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incidence). The shown scattered field is normalized to E j k jki 2 / exp( )π ρ ρ− . Both 
ASBC and BCHM results show a good agreement with MoM results. However, the 
BCHM method is more accurate and practically there is no difference between MoM 
and BCHM results. Notice that the radius of curvature is quite small in this example, i.e. 

the local planar approximation works well even if the geometry is quite different from 
the equivalent planar one.  
Figure 5. Scattered field from a dielectric cylinder loaded with periodic circumferential 
strips. (a) TMz polarized incident wave, (b) TEz  polarized incident wave. 
 
Fig 6. and 7 shows the equivalent blockage width of the scatterer from the previous ex-
ample. The equivalent blockage is a complex parameter showing how wide the cylinder 
appears for electromagnetic waves, and it is obtained from the forward scattered field 
[7]. The incident wave is TEz polarized in Fig 6 (TMz polarized in Fig. 7), and the re-
sults for two incident angles are shown: θ = 600  and θ = 900. The numerical results are 
also compared to the measurements. The results again show that both the ASBC and the 
BCHM are accurate approximations, and that the BCHM method is more accurate (as in 
Fig. 2, there is no difference between MoM and BCHM results). It is interesting to men-
tion that although the cylinder has a relatively small radius (0.42 λ0 at 10 GHz) the local 
planar approximation used in the BCHM method works very well. 
 
In Fig.6  we have discontinuities in the curves, which are seen in the measured results as 
well as in the results calculated with the MoM, and which the ASBC can not predict. 
Like in the planar case the discontinuities are due to the guided modes of the strip-
loaded dielectric cylinder. These guided modes correspond to the modes in a conven-
tional metal-walled dielectric-filled circular waveguide that have pure z-directed or φ-
directed currents depending on the strip direction, i.e., modes for which the tangential 
H-field component is orthogonal to the strips. Of symmetry reasons, there are more such 
modes present for normal incidence. This can also be seen to actually be the case by 
comparing Fig. 6.a (oblique incidence with θinc = 600) and Fig. 6.b (normal incidence: 
θinc = 900). The resonance-like phenomena is in Fig. 6.a due to the TE01 mode, in Fig. 
6.b due to the TE21, TE01 and TE31  modes. 
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Figure 6. The equivalent blockage width of a dielectric cylinder loaded with periodic  
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                circumferential strips for TMz incident wave. (a) θ = 600,(b) θ = 900. 
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Background

Homogenization is a technique which is usually employed when
studying problems where the applied wavelength is much larger
than the microstructure. The idea is to replace a heterogeneous
structure built up of small details with a fictitious, homogeneous
structure, which would produce the same scattering characterist­
ics. Strictly speaking, this can only be done in the limit where the
wavelength is infinitely large compared to the microscopic details,
but in real engineering problems the homogenization procedure
still produces acceptable results for finite wavelengths. However,
it is usually very difficult to deduce the range of validity for the
homogenized results. Some mathematical results, mostly for scal­
ar equations, can be found in [2­7].

In this contribution we treat two separate questions: 

1) Under which circumstances is it possible to model a particular
structure as a material? For most structures, say a PBG, there
is in general an infinite number of degrees of freedom for the
electromagnetic field, corresponding to the number of modal
solutions. By choosing the frequency low enough, the number of
modes can be reduced to only correspond to the possible polariz­
ations of the electromagnetic field.

2) Once the structure is modeled as a material, we may ask how
strong the dependence on the scale difference between the
wavelength and the microscopic structure is. This corresponds

3.1 Range of validity of canonical homogenized problems
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to identifying the spatial dispersion, which is given by the de­
pendence of the effective permittivity on ka, where k is the
wavenumber of the applied field, and a is the typical size of the
microstructure.

The first question is addressed in [9, 10, 1], where it is shown that
it is possible to define a mathematically rigorous homogenization
procedure even in the case when the applied wavelength is finite
compared to the microstructure. In fact, it is necessary to be able
to treat finite scales, since otherwise our models would not be able
to describe important effects such as chirality. The typical way of
building chiral materials is by including small metallic coils in a
matrix material; the coils provide a coupling between the electric
field and the magnetic field, but the coupling vanishes for very
large wavelengths. The second question is addressed in [8, 11],
which investigates spatial dispersion in some specific geometries.

In this contribution, we treat both general results directly from
the mathematics, which provides results for any microscopic geo­
metry, as well as a closer look at layered media consisting of two
phases. In the latter case, an exact dispersion relation can be
found which provides the means for deriving explicit expressions
for the homogenized medium.

Ideas behind the mathematical results

The general idea is to define the fictitious, homogenized material
as the material which has the same characteristics for wave
propagation inside the material. This corresponds to defining the
homogenized material from the original structure's dispersion re­
lation and the associated eigenwaves, that is, the typical
propagating waves inside the structure. In general, this requires
the homogenized material to depend on the wave vector k, that is,
we need to include spatial dispersion in the model. The depend­
ence on k vanishes for small wave numbers, that is, long
wavelengths.

This basic idea is simple, but the real trouble consists in proving
that it actually provides something useful, that is, that the homo­
genized problem is sufficiently close to the original one. This can
be done in a setting where Maxwell's equations can be associated
with a compact operator. Compact operators can be identified
with infinite­dimensional matrices, which allows for a singular
value decomposition, much in the same way as for finite­dimen­
sional matrices. When solving matrix problems with the singular
value decomposition, the problem is often regularized by throwing
away the smallest singular values, corresponding to using the
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Moore­Penrose pseudoinverse. In the case of Maxwell's equations,
it can be shown that when the microscopic scale becomes very
small, only six singular values can be expected to contribute to
make a sizable contribution to the total field. These six degrees of
freedom correspond to the six possibilities of choosing polariza­
tions of the electric and the magnetic fields.

The typical setting is to study periodic materials, where the cal­
culcations can be restricted to a unit cell with periodic boundary
conditions after applying a Floquet­Bloch transformation of the
fields. This transformation requires the typical field to have the
representation

ik⋅x E x =e E x 

where the Bloch amplitude  E x  is a periodic function of x, and
the Bloch wave vector k is restricted to the first Brillouin zone.
The only real change necessary in the equations is to alter the de­
rivatives according to ∇∇ik and applying periodic bound­
ary conditions. The homogenized material parameters can then be
expressed in terms of mean values of the Bloch amplitudes and/or
the dispersion relation  k  . For more details and explicit rep­
resentation formulas we refer to [9, 10].

General results for arbitrary geometries

The available mathematical proofs that it is possible to define ho­
mogenized materials, albeit using spatial dispersion, requires the
following condition to hold (for nonmagnetic materials, the
straightforward generalization to bianisotropic media is given in
[9, 10]):

−1
(1) k0a∥ x −1∥1
where the supremum norm is used for the complex relative per­
mittivity. The wavenumber k0=/c0=2/0 is the wavenumber
pertaining to vacuum, and a is the size of the unit cell. The im­
portance of this condition is that the wavelength does not have to
be infinitely larger than the microscopic scale. This is necessary
in order to be able to study materials consisting of more or less
resonant inclusions, where the dynamics of the electromagnetic
field must be accounted for also on the microscopic scale.

This result shows that high contrast media may require large dif­
ference in vacuum wavelength 0 and cell size a, that is, small
k0a . Note carefully though that (1) is only a sufficient condi­

tion for homogenization to be valid, for specific geometries the ho­
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mogenized materials may still provide useful results even when
this condition is violated.

Spatial dispersion for special geometries

A different kind of question arises when we ask how prominent
the spatial dispersion is. This corresponds to estimating the de­
pendence of the effective permittivity on k. In [11], the authors in­
vestigated the error made if the homogenization was based on in­
finite wavelength compared to using a finite wavelength for a few
specific geometries. The geometries were as depicted below:

Figure 1: Three canonical geometries. Leftmost is a 2D­geometry,
and the scaffold structure and the spherical inclusions on the
right are 3D geometries.

The results, as depicted in Figures 2 and 3, indicate that the rel­
ative error, defined as

k ∣∣eff 0−eff
k eff

did not exceed 10% if the contrast was less than 10. The effective
permittivity eff 0 corresponds to the effective permittivity
calculated using infinite wavelength, and  eff k  is the effective
permittivity calculated using a finite wavelength.
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Figure 2: Results for the 2D chessboard geometry.

Figure 3: Results for the 3D scaffold and spherical geometries.

For layered media with two phases 1 and  2 , each occupying a
volume fraction of  f1 and  f2 and layered in the z direction, the
following asymptotic expressions for the effective permittivity can
be obtained [1]:

1 1−2
2 f 1 f 2

2
peff=f 11f 2212 f11f 22

ka2Oka4

for polarizations parallel to the material interfaces, and
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q f1 f 2 1k =[  sin2 cos2]
−1

eff 1 2 f11f 22


2

2f 11f 22 2sin2−cos
1 1−2

2 f1 f 2
2 12  ka2

12 f11f 22 f1 f 2 2 f11f 22sin
2cos  1 2

+O  k0a 4
for polarizations in the plane spanned by the wave vector k and
the normal to the material interfaces (the z direction), with the
angle   being the angle between the wave vector and the z direc­
tion. From these expressions it is evident that the spatial disper­
sion, that is, the dependence of the effective permittivity on k, is
proportional to  1−2

2 f1 f 2
2 for small wave numbers. This

shows that the spatial dispersion is more important for composite
materials with high contrast and sizable volume fractions, than
for almost homogeneous materials with low contrast.

Another interesting observation is that by choosing the propaga­
tion angle according to

12=arctan
f11f 22

the spatial dispersion can be minimized for one of the polariza­
tions. However, since the permittivity is minimal in this direction,
the material will act as a concave lense and spread out a ray pack­
et centered around this direction. Once again, specific geometries
may be more robust against spatial dispersion than others.

Conclusions

A heterogeneous structure may be modeled as a homogeneous ma­
terial, even if the applied wavelength is not infinitely large com­
pared to the microscopic scale. We have presented a sufficient con­
dition for arbitrary geometries, but a wider range of validity for
specific geometries can be anticipated.

Spatial dispersion is expected to be more important for composite
materials with high contrast and sizable volume fractions, than
for almost homogeneous materials with low contrast.
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This contribution consists mainly of results from a Master's Thes­
is written by Lovisa Nord at Lund University, who studied the in­
fluence of manufacturing tolerances on wave propagation in fre­
quency selective radomes. This work was supported by the
Swedish Defence Materiel Administration, and was motivated by
a need from the radome industry to get a better understanding of
the impact of various design parameters. We refer to [3] for the
full report, which is publicly available, and give only a brief sum­
mary with some representative results here.

The manufacturing of a radome

This section provides a rough description of the radome manufac­
turing process as performed at Chelton Applied Composites AB in
Linköping, Sweden.

The radome is constructed on a metal tool. This serves as a
mould, and should thus have the same shape as the intended
radome. Nose cone radomes are for instance made on a tool
shaped as a cone. 

Monolithic radomes, i.e., radomes consisting of only one material,
are mostly made from a composite. This material is created dur­
ing the manufacture of the radome, and is a mixture of glass fiber
weave and some kind of plastic, for instance polyester. The per­
mittivities of the two components are different, and mixing them
in the correct proportion gives the composite its specified effective
permittivity. Pieces of the woven material are adhered to the
manufacturing tool, with thin layers of the liquid polyester in
between. A vacuum pump is used to pump out any air left
between the layers, in order to prevent bubbles or gaps of air.
When the radome has the correct thickness it is dried and
tempered with the help of ultraviolet radiation, after which a cut­
ter cuts it to its specified outer shape. The radome's electrical
thickness is then tested by measuring the insertion phase delay
(IPD) of every part of the radome. This can be adjusted by modify­
ing the local thickness.

3.2 Effects of manufacturing tolerances
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Stratified radomes are manufactured similarly, but here the lay­
ers of different materials must also be glued together, usually
with an epoxy glue. If composites are used they are created on the
tool as described above, but foam materials are glued to the other
layers in thicker pre­made slabs. 

Any FSSs used are usually etched on a dielectric substrate
covered with metal film, the same kind of process that is utilized
for making printed circuits. The FSSs are then adhered to the
other parts of the radome on the manufacturing tool.

Manufacturing defects

There is a multitude of errors that can be made in the manufac­
turing of a radome. There will always be slight deviations from
the intended design, as the manufacturing precision is only fi­
nitely accurate. The properties of the materials used may also
vary.

Defects in the dielectric layers may concern thickness, permittiv­
ity or conductivity. In a purely dielectric radome the electrical
properties are controlled by those parameters only.

The permittivity of a dielectric is usually specified only as a per­
mittivity interval. Deviations from an exact value are thus com­
mon. Small thickness variations are probably rather frequent as
well, caused directly or indirectly by the manufacturing process or
mechanical wear. High­speed flights through rain may for ex­
ample erode the radome so that its outer walls gradually become
thinner. Also, the conductivity (or imaginary part of the complex
permittivity, representing the bulk losses) may deviate from the
specified values.

Another scenario for errors is that the wanted materials are not
available. A good theoretical radome design may exist where the
parameters are chosen to yield the desired properties. The manu­
facturing “error” may then only be that the wished for materials
are not available so that materials of slightly different permittiv­
ity or thickness must be used instead.
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When considering the FSSs involved, numerous defects may ap­
pear, of which many concern the elements. For instance the shape
of the elements may be slightly wrong and this could concern just
one element, some elements, or all of them, depending on the
source of the error. The same applies to the size and placing of the
elements. They might erroneously be placed non­periodically or
non­symmetrically. However, as is shown in [4], the effect on the
far field pattern is negligible if the error is much smaller than the
wavelength. The manufacturing process for the FSS as such is
very reliable, and thus we do not consider errors in this layer.
However, effects arising from the difficulties of applying a double­
periodic FSS on a doubly curved radome may still appear.

If the radome contains two FSSs, it is probable that those are not
placed exactly opposite to each other, i.e., there may be an offset
between them. If the radome is doubly curved, as most radomes
must be to enclose an antenna, an offset between the two FSSs is
inevitable if the two surfaces are separated some distance from
each other. The curvature then makes them experience slightly
different curve radii. This case is investigated in [2], where it is
suggested that the distance between the FSSs may need to be as
large as three quarters of a wavelength for this effect to be safely
neglected.

Errors may also occur during the assemblage of the radome lay­
ers. Due to the doubly curved shape, the layers can easily become
uneven, and air gaps or air bubbles may appear. Unevenness
should be unavoidable, since when planar sheets are glued to the
doubly curved surface, some areas must become thicker than oth­
ers. This may also cause the local permittivity to vary.

Furthermore, the radome can be poorly constructed so that it does
not bear the heat and mechanical wear that it might be exposed to
when in use, and air cracks can then develop after some time of
usage. This is more probable if the radome contains one or more
FSS. The metal and the dielectrics have very different thermal ex­
pansion coefficients, so at the high temperatures that can develop
during flight, caused by friction, different layers of the radome
might expand differently. If the construction is weak, this may
result in an air crack between those layers [1].

Test radome
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To investigate the effects of manufacturing tolerances, an ex­
ample radome from [1] was chosen and is depicted below. 

Figure 1: Transmission properties of a hybrid radome from [1, p.
248]. 

The hybrid radome consists of two FSS sheets, separated by a
dielectric and surrounded by two additional dielectric slabs. The
behavior of this radome was investigated using the program de­
veloped by Widenberg in [5]. Since some of the dimensions of the
geometry are not given in [1], some initial work was done to find a
geometry which approximately produces the same transmission
data as in Figure 1.
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Not all of the possible manufacturing errors listed in the previous
section were investigated. The following selection of parameters
were studied in [3]:

● Inclusion of glue layers in the model, with variations in thick­
ness and permittivity.

● Inclusion of air gaps in the model, with variations in location.

● Losses in the inmost dielectric. 

● Variations in total thickness of the radome, varying both in the
inner and the outer dielectric layers.

● Optimum design compared to using commercially available ma­
terials.

In this text, we only report on some representative results, i.e.,
the inclusion of glue layers, the influence of losses in glue layers
close to the FSS, variations in thickness of the radome, and the
impact of using off­the­shelf materials instead of design values.

Results

As noted above, not all the results from the simulations are repor­
ted here, and we refer to the full report [3] for more details. In
particular, the full report demonstrates simulations with more
angles of incidence.

The inclusion of glue layers in the model is most critical near the
FSS. This can be interpreted in terms of the FSS as a resonant
structure, depending strongly on the wavelength employed. Since
the wavelength is theoretically scaled by the square root of the
permittivity, a glue layer with strong contrast compared to the
bulk dielectric sheets may substantially change the resonance fre­
quency of the FSS. This is shown by the figures below.
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Figure 2: Reflection from a radome model including epoxy layers
compared to reflection from a radome model that excludes them. 

Losses in the glue layer do not seem to be that critical. To get a
noticeable effect, the losses had to be made one or two orders lar­
ger in magnitude than the commercially available glue, as demon­
strated in Figure 3.
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Figure 3: Effects of losses in a glue layer adjacent to the FSS. The
conductivity values are given in S/m, and the lowest value corres­
pond to realistic values for the glue used in production.

When changing the thickness of the dielectric layers of the
radome, the electrical properties are much more sensitive to
changes in the layer separating the two FSSs, as shown in Figure
4. This can be interpreted by noting that the region between the
FSSs can be seen as a cavity, and a change in the thickness
changes the resonance frequency of that cavity, whereas a change
in thickness of the outmost dielectric layers mostly influence the
angular bandwidth of the radome.
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Figure 4: Reflection from the unperturbed Munk radome is com­
pared to the reflection from a radome that is 1 mm thinner. The
dashed line represents a 1 mm thickness decrease in the inner
radome layer, and the dotted line represents a thickness decrease
of 0.5 mm in each of the outer layers.

To conclude this section, we discuss the result of using off­the­
shelf materials when realizing a design. At the radome production
plant, only a restricted range of dielectric materials are available.
In Figure 5, the materials closest to the desired design paramet­
ers are given together with simulation data.
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Figure 5: Reflection of Munk's optimally designed radome com­
pared to that with commercially available materials.

Conclusions

We have given some examples of the effects of manufacturing tol­
erances on wave propagation characteristics of frequency selective
radomes. One important common feature evolves from these res­
ults, namely that it is important to be thorough and use tight tol­
erances on geometries which constitute a resonant structure. Fur­
thermore, small losses, either in thin glue layers or in bulk dielec­
trics, do not seem to be very important when studying reflection
data. It is more pronounced in transmission data, as shown in [5].

Even if small changes in thickness of nonresonant parts of the
structure do not influence the reflectance of the radome much, it
may influence the phase of the transmitted field to such a degree
that a pointing error appears, i.e., the antenna behind the radome
is not radiating in the desired direction. At present, this is
checked by tedious measurements and manual fixes by the
radome manufacturer, which might be eliminated if the antenna
is “trained” to compensate for the radome. This is possible at least
for phased array antennas.
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Test Case

Multi-layer Frequency Selective Surface

Parametric analysis of the effects of manufacturing tolerances

TNO

November 11, 2005

1 Layout

The periodic structure considered for this test case consists of two equal dipole-based Fre-
quency Selective Surfaces (FSS) printed on the two sides of a dielectric slab, made of Taconic
TLY 5, a Duroid with dielectric constant 2.2 (FSS core). The FSS geometry is indicated in
Fig. 1a. The folded dipoles have dimensions dw=3.3 mm, dl=5.1 mm and w=0.3 mm, and
are arranged in a triangular grid characterized by d1=21 mm, d2=13.83 mm and skew angle
Ω = 40.6◦. The double FSS is matched to free space by means of two slabs of Bisco Cellular
Silicone HT-820 foam, with an average permittivity of 1.64. The supplied foam layers are
stuck together with a bonding film having permittivity 2.32. The layout of the structure is
shown in Fig. 1b, while the thickness of the various layers is indicated in Tab. 2 and the
permittivity of the materials, with corresponding tolerances, is shown in Tab. 1.
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Figure 1: Multi-layer FSS. (a) FSS geometry (the bonding film is not shown in this figure).
(b) Final structure of the manufactured FSS.
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Dielectric Permittivity and tolerance

Foam (Bisco HT-820) 1.64 ± 0.12
Bonding film (Arlon 6250) 2.32 ± 0.10

Fiberglass/PTFE (Taconic TLY5) 2.2 ± 0.02

Table 1: Permittivity of the dielectric slabs in the manufactured FSS panel.

Layer Thickness (mm)

Foam 3.1
Bonding film 0.1

Foam 2.2
Bonding film 0.1

Foam 2.2
Bonding film 0.1

copper cladding 0
Fiberglass/PTFE 4.5
copper cladding 0
Bonding film 0.1

Foam 2.4
Bonding film 0.1

Foam 2.4
Bonding film 0.1

Foam 3.1

Table 2: Thickness of the dielectric slabs in the manufactured FSS panel.

2 IEMEN results

The reflection and transmission coefficients of the structure described in the previous section
are shown in Fig. 2, for the case of TE plane wave incidence with respect to the plane of
incidence x − z(φ = 0), and for four incidence angles ϑ = 0◦, 15◦, 20◦, 25◦. These results
have been simulated by means of the Multimode Equivalent Network approach based on the
Integral Equation formulation (IEMEN)described in the Catalogue of Software for Reflector
Surface Modelling - ACE WP2.3-2 Reflector Surface Models and in the references reported
there. Note that the losses of the materials and the ohmic losses of the FSS elements have not
been included in these simulations. Moreover, as permittivity we have used the theoretical
values indicated in Tab. 1, while the tolerances have been reported to interpret deviations
from the measurement results of Sec. 3.

3 Measurements

The transmission measurement setup is shown in Fig. 4. The measured transmission coeffi-
cient is shown in Fig. 3.

2
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Figure 2: IEMEN simulation results of the manufactured FSS for the angles of incidence:
ϑ = 0◦, 15◦, 20◦ and 25◦. (a) Amplitude of the reflection coefficient. (b) Amplitude of the
transmission coefficient.

4 Parametric study

The Arlon bonding film is optimized for PTFE-based laminates; in this case the typical
temperature and pressure needed to flow the adhesive and ensure the bonding are 120oC
and 6.4 tons respectively, applied for about 10 minutes. However, while for the bonding of
the foam to the Taconic board the FSS manufacturer could stick to these standard values,
the foam-to-foam bonding required a higher temperature and pressure. In particular, the
FSS panel was vacuum pressed at 20 tons for one hour, at a temperature of 150oC. As a
consequence, the bonding process slightly changed the thickness and the dielectric properties
of both the foam and the bonding film in a non-predictable way.

To assess the FSS sensitivity to the dielectric profile (dielectric constant, tangent loss and
thickness of each dielectric slab) and other geometrical dimensions, a parametric study has
been performed on the FSS performances as a function of the following parameters:

• dielectric constant of the bonding film;

• dielectric constant of the foam;

• thickness of the bonding film;

• thickness of the foam;

• dipole dimensions;

• alignment of the two arrays;

• dielectric losses.

In all cases, we have considered broadside plane wave incidence with polarization on the
H plane.

3
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Figure 3: Amplitude of the transmission coefficient measured for different incidence angles,
using the setup shown in Fig. 4.

Dielectric constant of the bonding film The nominal value of the dielectric constant of
the Arlon bonding film is 2.32. However, because of difficulties encountered in bonding the
foam with the FSS core (Duroid), an additional adhesive was used to improve the adhesion.
Since the dielectric properties of the adhesive were not indicated by the manufacturer, coaxial
probe measurements of permittivity were performed at TNO on samples of Arlon bonding
film + adhesive extracted from the panel. Values as high as 3 were observed.

In view of this, we have compared the performances of the FSS structure for three values
of the bonding film permittivity: 1.6, 2.3, 3. As shown in Fig. 5, a change in the permittivity
of about ± 25% corresponds to a shift of the resonance frequency of ± 2.5%.

Dielectric constant of the foam The external FSS layer was made of Bisco Cellular Sili-
cone HT-820, an high-performance silicone foam produced by Rogers Corporation. This foam
consists of a spongy core covered by a smooth uniform surface, with a nominal permittivity
of 1.5 at 60 Hz. Tests were performed to determine the dielectric properties of the foam in
the operating X-band. The range of possible permittivity values predicted by Rogers Corp.
was 1.52-1.76, with a medium value of 1.64. A similar value was measured at TNO by means
of the coaxial probe test instrument. Note that, since the material is not homogeneous, only
an average dielectric constant can be considered. Furthermore, the temperature and pressure
needed for bonding could have slightly changed the dielectric properties of the material. In
view of this, it is important to evaluate the effect of a change in the foam permittivity on the
FSS performances.

The FSS structure has been simulated for three values of the foam permittivity: 1.52,
1.64, 1.76. Fig. 6 show that a change of the permittivity of the 12% introduces a shift of the
resonance frequency of the structure of ±1.0%.

Thickness of the bonding film The nominal thickness of the bonding film is 0.0381mm.
However, because of problems encountered when bonding the foam layer with the Duroid,
several layers of different bonding films were overlapped. In Fig. 7 we have compared the
FSS performances for three values of the bonding film thickness: 0.1mm ± 0.05mm. As can
be seen, although these layers are more than one order of magnitude smaller than the other

4
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Figure 4: Schematic of the transmission measurement setup

dielectric layers, still they have a significant impact on the FSS performances.

Thickness of the external foam layer The nominal thickness of each foam slab, as
indicated by the manufacturer, was 2.54mm. However, the actual value of this thickness,
measured by our workshop in the delivered structure, was 3.1mm for the external slabs and
between 2.2mm and 2.4mm for the four internal layers. Also this effect could be explained
by the stress applied to the foam in the bonding phase. We have considered here the effect of
a deviation of ± 0.6mm on the total thickness (8%), which corresponds to ± 0.2mm on each
layer’s thickness. Results are shown in Fig. 8. No significant deviations have been observed
in the -3dB stop band. This result could be expected since the dielectric permittivity of the
foam layers was relatively close to one (air).

Length of the dipoles Some differences between the dimensions of the dipoles indicated
in the design and those in the actually manufactured structure were observed. These manu-
facturing errors were not systematic, in the sense that not all of the elements were effected by
the same error. In general, it is too complicate to characterize the effect of random errors. In
this case, in fact, the structure should have been considered non-periodic and it would have
been necessary to apply a full-wave analysis with an element-by-element approach. Such an
approach is not feasible, or at least is extremely heavy from the computational point of view,
because of the very large number of elements. Nevertheless, in order to have an idea of the
impact of these differences, simulations were performed assuming a uniform deviation applied
to all the elements. This, of course, can be considered the worst case, since all the elements
contribute coherently to the error. Simulations were performed for different lengths of the
dipole vertical and horizontal arms (length of the dipole vertical arm equal to 5mm, 5.1mm
and 5.2mm and length of the horizontal arms equal to 3mm, 3.3mm and 3.6mm). The width
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Figure 5: Effect of the permittivity of the bonding film. (a) Reflection coefficient. (b)
Transmission coefficient.

was also changed from 0.28mm to 0.3mm and 0.32mm. These variation were based on the
average errors observed on the printed elements. Fig. 9 and Fig. 10 show the effect of a
change in the length of the vertical and of the horizontal arm of the dipole, respectively. The
performances of the FSS after a change in the dipole width of ± 0.02mm are shown in Fig. 11.

Alignment of the two arrays In the design, the two FSS’s have to be perfectly aligned.
We have evaluated the effect of a misalignment between the elements of the two arrays, by
introducing a shift of 0.1mm along the x -direction and along the y-direction. Fig. 12 show
the corresponding reflection and transmission coefficient. As could be expected, the effect
of the shift in the horizontal dimension is the only one having a significant impact. This is
basically due to the fact that the shift in the x-direction determines a larger decoupling of
the elements with respect to the corresponding case of shift in the y-direction. In this last
case, in fact, the effect is only a little (in percentage) sliding along the main dimension.

Effect of the losses in the dielectric Furthermore, we have evaluated the effect of the
losses in the dielectric layers on the performances of the FSS structure. In particular, we have
included in the simulations the tangent loss of the Duroid, as indicated by Taconic in the data
sheet: 0.0009, and the one of the foam as measured by Rogers: 0.0981. The tangent loss of
the Arlon bonding film is 0.0013, but, since information about the losses of the other adhesive
was not made available by the manufacturer and could not be recovered by measurements
with the coaxial probe, the losses associated to the bonding process were not included in
this analysis. Fig. 13 shows the reflection coefficient of the structure where the losses were
included compared with that of a structure made of perfect dielectric. The insertion loss, as
difference between the maximum reflection coefficient with and without losses, is about 0.54
dB, as can be observed in the detail of the curves in the figure inset.
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Figure 6: Effect of the foam permittivity. (a) Reflection coefficient. (b) Transmission coeffi-
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Figure 8: Effect of a change in the thickness of the foam. (a) Reflection coefficient. (b)
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Figure 9: Effect of a change in the length of the vertical arm of the dipole. (a) Reflection
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Figure 10: Effect of a change in the length of the horizontal arm of the dipole. (a) Reflection
coefficient. (b) Transmission coefficient.
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5. Effects from manufacturing tolerances 
In this section an example of sensibility to patch manufacturing 
tolerances will be shown. 

We consider a capacitive FSS made up of vertical dipoles ar-
ranged on a rectangular lattice, with geometry described in the 
following Figure 4.3a: 

 

Figure 4.3a. Geometry of the capacitive FSS 

The actual dimension are: L = 15 mm, W = 1.5 mm, d1 = 12 mm, 
d2 = 18 mm. The frequency response of such a device, for normal 
incidence, is represented in Figure 4.3b 

d1 

d2 W 

L 
α 

β 
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Figure 4.3b. Frequency response of the capacitive FSS (normal in-
cidence) 

First of all, let us assume that the FSS was realised with a manu-
facturing  tolerance on the inclination of the patches, which re-
sults in a variation of the angle α. To analyse the effect of varying 
such a parameter, initially a constant rotation was applied to all 
patches. If all patches were printed with the same inclination, the 
most relevant effect is a shift in the resonance frequency, which 
appears to be shifted down about 1.5% for inclination variation of 
5 degs. 
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Figure 4.3c. Frequency responses of capacitive FSSs (normal inci-
dence) with α as a parameter, from 0 to 5 degs. 

Morevoer, an asymmetrical non-uniform distribution of patches as 
been investigated. To obtain the result, a parametric study was 
performed taking into account a random variation of α, with a 
Gaussian distribution of values between 0 degs and 5 degs. Sev-
eral simulations were run, changing the average value and the 
variance of the statiscal distribution. The most relevant effect is 
that it is sufficient to have 10% of the patches shifted, to degrade 
the frequency behaviour of the FSS.   
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Figure 4.3d. Frequency responses of capacitive FSSs (normal inci-
dence) with a statistical variation of α as a parameter, between 0 

degs  and 5 degs. 

Finally, a symmetrical non-uniform distribution of patches was 
investigated. To obtain the result, a parametric study was per-
formed taking into account a random variation of α, with a Gaus-
sian distribution of values between -5 degs and 5 degs. Several 
simulations were run, changing the average value and the vari-
ance of the statiscal distribution. Like the asymmetric case, the 
most relevant effect is that it is sufficient to have 10% of the 
patches shifted, to degrade the frequency behaviour of the FSS. 
Even if the patches distribution appear to macroscopically uni-
form the shape of the array, the result is downgraded, like the  
asymmetrical one. 
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Figure 4.3d. Frequency responses of capacitive FSSs (normal inci-
dence) with a statistical variation of α as a parameter, between -5 

degs  and 5 degs. 
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6. Fast approximate methods compared to 
rigorous solutions 

For the investigation of reflector antennas with surfaces other 
than perfectly conducting it is essential that fast and reliable 
software is available to model the local reflection and transmis-
sion properties everywhere on the surface. It is the purpose of the 
present chapter to illustrate the validity of approximate methods 
for strip grids and rectangular meshes by comparing them to ac-
curate Method of Moments solutions.  

The rigorous and the approximate methods are described in Sec-
tions 6.1.1 and 6.1.2, respectively and the comparisons between 
them are presented in Sections 6.2 and 6.3 for strip grids and rec-
tangular meshes, respectively. 

6.1 Solution methods 

6.1.1 Rigorous solution 

Politecnico di Torino has developed the computer program “ME-
tallic STrIps Simulator (MESTIS)” and the associated manual 
(Orta et al., 2001). The program is based on a Method of Moments 
approach and it is possible to model one or more layers of 
co-planar strip grids and each layer can consist of one, two or 
three strip grids making arbitrary angles with each other. A layer 
with three strip grids is illustrated in Figure 6-1. In addition, it is 
possible to model dielectric layers around and between the differ-
ent strip grids. 
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Figure 6-1 Example of three co-planar strip grids forming a 

two-dimensional periodic structure 

The electromagnetic properties are in MESTIS described by the 
so-called scattering matrices. In order to be able to use the results 
in the reflector antenna program, GRASP9, it is necessary to 
transform the scattering matrix parameters into the reflection 
and transmission coefficients required by GRASP9 (Pontoppidan, 
2005).  

The main driver for the development of MESTIS was to be able to 
analyse the electrical properties for two or more co-planar 
non-parallel strip grids in electrical contact. Therefore only the 
current component along the strip is included whereas the com-
ponent orthogonal to the strip is neglected since it will be very 
small compared to the currents flowing in the other set of strips. 

Also another software package for strip grids from Torino is avail-
able, ASG (Analysis of Strip Gratings). This package deals with 
only one or two parallel strip grids, but here also the current com-
ponents orthogonal to the strip direction are taken into account. 

The two software packages mentioned above will be used to 
evaluate the faster but more approximate methods implemented 
in GRASP9. 

6.1.2 Approximate methods 

A planar sample of a general reflector material is illustrated in 
Figure 6-2. The direction of an incident plane wave is given by the 
spherical coordinates( ),i iθ φ , where iθ  is measured from the posi-
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tive z -axis and iφ  from the positive x -axis. The angle iθ  is lim-
ited to the range 0 90oiθ° ≤ < . 

 

iθ̂

iφ̂
rθ̂

rφ̂

tθ̂

tφ̂x 

y φi

θi 

z 

Surface 
material

Ei

Er 

Et  
Figure 6-2 Unit vectors for the definition of reflection and 

transmission coefficients in GRASP9. 

The incident plane wave can be decomposed as 

 ˆˆi i i
i iE E Eθ φθ φ= +  (6-1) 

and is partly reflected and partly transmitted through the sur-
face. The unit vectors of incidence, îθ and îφ , are the usual polar 
vectors shown in Figure 6-2. 

The reflected field is given by 

ˆˆr r r
r rE E Eθ φθ φ= +    , (6-2) 

where 

r i

r i

E R R E

R RE E

θ θθ θφ θ

φθ φφφ φ

⎧ ⎫⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭ ⎪ ⎪⎩ ⎭

 (6-3) 

and the unit vectors of reflection, r̂θ and r̂φ  are the negative mir-
ror images of îθ  and îφ , respectively. Similar relations can be set 
up for the transmitted field. 
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6.1.2.1 Strip grid 

A strip grid consists of parallel strips. Each strip has a width w  
and the spacing of the strips is s  (the distance from the centre of 
one strip to the centre of the next). 

The reflection and transmission coefficients are given by Naka-
mura and Ando (1988). For a plane wave at normal incidence, 

0i iθ φ= = , polarised parallel to the strips the reflection coeffi-
cient is 

1
1
2
ln cos( (1 ))

2

R
jt

s w
t

s

θθ

π
λ

=
+

⎞⎛ ⎟⎜= − − ⎟⎜ ⎟⎝ ⎠

 (6-4) 

and for polarisation orthogonal to the strips one gets 

'
1 '
2

' ln sin( (1 ))
2

jt
R

jt
s w

t
s

φφ

π
λ

=
+

⎞⎛ ⎟⎜= − − ⎟⎜ ⎟⎝ ⎠

 (6-5) 

where λ  is the wavelength. Expressions (6-4) and (6-5) show that 
if the spacing relative to the wavelength, /s λ , is reduced while 
the ratio between the width and the spacing, /w s , is kept con-
stant, 1Rθθ →  and 0Rφφ → . 

For incidence angles other than normal the reader is referred to 
(Nakamura and Ando, 1988). 

6.1.2.2 Wire grid 

The wire grid material consists of a planar sheet of parallel circu-
lar cylindrical wires of spacing s. The diameter of the wires is 0d . 
It is assumed that 0d s<< .  

The wire grid has many similarities to the strip grid and it can be 
shown that for polarisation parallel to the wires the reflection is 
equal to that of a strip grid where the strip width 02w d=  (But-
ler, 1982). The angular dependence with iθ  and iφ  is the same as 
for the strip grid. 

6.1.2.3 Rectangular mesh 

The rectangular mesh grid consists of two orthogonal sets of wires 
as illustrated in Figure 6-3. The spacing between the wires is xs  
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and ys  for the wires in the x - and y -direction, respectively. The 
wire diameter is 0d  and the two sets of wires are in electrical con-
tact at all the intersection points. 

 
     
  

x 

y 

sy 

sx 

 
Figure 6-3 Rectangular mesh 

The reflection and transmission coefficients used in GRASP9 are 
based on Astrakhan (1968). For normal incidence in one of the 
principal planes, for example 0iφ = , the reflection coefficients are 
practically identical to those for the wire grid, i.e. Rθθ  is the same 
as for the wire grid with spacing xs . 

6.2 Strip grids 

This section presents a number of numerical experiments for sin-
gle strip grids such as strip grids in free space, strip grids im-
mersed in a dielectric and strip grids located on the one side of a 
dielectric.  

For all the examples the reflection and transmission properties 
are illustrated by just one of the components of the reflection and 
transmission matrices, namely the magnitude of Rθθ . The reason 
for this important simplification is that it has been observed that 
all the components behave in a similar fashion and it is therefore 
sufficient to investigate only one of them. 

6.2.1 Strip grid in free space 

A single strip grid is considered and the strips are parallel to the 
x -axis in Figure 6-2. The parameters for the strip grid are 

frequency = 10 GHz (λ  = 30 mm) 
strip spacing, s  = 1.5 mm 
strip width, w  = 0.1 mm 



6 TICRA 

The results are shown in Figure 6-4. The left side of the plot 
shows the amplitude of Rθθ  calculated by MESTIS as a function 
of the angle of incidence ( , )θ φ . θ  varies from 0º to 60° and φ  var-
ies from 0º to 90°. The figure shows that the amplitude is maxi-
mum in the plane of the strips, 0φ = ° , and minimum in the plane 
orthogonal to the strips, 90φ = ° . 

The results obtained by GRASP9 for this example are almost 
identical as identified by the right side of Figure 6-4 which shows 
the difference between Rθθ  obtained by MESTIS and GRASP9. 
The maximum difference appears at normal incidence and it is 
around 0.25 per cent. The same order of agreement exists for the 
other components of the reflection matrix. The selected strip di-
mensions are typical for practical applications and the accuracy 
obtained with GRASP9 is more than acceptable. 
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Figure 6-4 Reflection coefficient for single strip grid in free 

space, s =  1.5 mm, w =  0.1 mm 

In the next example the strip spacing is still 1.5 mm but the 
width is increased to 0.5 mm or one third of the spacing. The re-
sults are shown in Figure 6-5 and it is seen that the accuracy is 
very good except for φ  near to 90º. The reason to this is that ne-
glecting the currents orthogonal to the strips is not acceptable for 
wide strips. The example was therefore also investigated with 
ASG and the obtained reflection coefficient for normal incidence 
and φ  = 90º were: 
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MESTIS: 0. 
GRASP9: 0.0144 
ASG:        0.0147 

This verifies the orthogonal component as given by (6-5). 
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Figure 6-5 Reflection coefficient for single strip grid in free 

space, s =  1.5 mm, w =  0.5 mm 

In the last example of strip grids in free space the strip width is 
reduced to 0.01 mm. The result is shown in Figure 6-6. This result 
is surprising since one would intuitively expect a better agree-
ment when the strip width is reduced. The example was therefore 
also investigated with ASG and the obtained reflection coefficient 
for normal incidence and φ  = 0º were: 

MESTIS: 0.9535 
GRASP9: 0.9102 
ASG:        0.9271 

Again there is a good agreement between GRASP9 and ASG and 
we must conclude that there is probably a problem in MESTIS for 
very narrow strip widths. For realistic strip widths it seems to 
work fine. 
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Figure 6-6 Reflection coefficient for single strip grid in free 

space, s =  1.5 mm, w =  0.01 mm 

6.2.2 Strip grid in dielectric resin 

This example uses the same strip grid as before but it is now lo-
cated in the middle of a 7.5 mm thick dielectric layer with a rela-
tive dielectric constant 4rε = . This thickness was selected be-
cause it provides perfect cancellation of the reflected field for 
normal incidence in the absence of the strip grid. 

The results for Rθθ  are shown in Figure 6-7. This case is inter-
esting in the sense that it illustrates the limitations of the 
GRASP9 approach. The reason is that in GRASP9 the result is ob-
tained by cascading three independent layers: 1) a 3.75 mm thick 
dielectric, 2) the strip grid and 3) another 3.75 mm thick dielec-
tric. In MESTIS the interaction between the strip grid and the di-
electric is properly taken into account. 



TICRA 9 

0

90
0

60

0

0.2

0.4

0.6

0.8

1

φ

MESTIS

θ

0

90
0

60

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

φ

MESTIS minus GRASP9

θ

 
Figure 6-7 Reflection coefficient for single strip grid in the 

middle of a 7.5 mm thick dielectric with 4rε = , 
s =  1.5 mm, w =  0.1 mm 

At normal incidence for 0φ = °  the difference between GRASP9 
and MESTIS is quite small, about 2%, but for increasing angle of 
incidence the difference increases rapidly. For 90φ = °  the strip 
grid is orthogonal to the θ -direction and only the dielectric plate 
is playing a role and GRASP9 and MESTIS provide the same re-
sult. 

6.2.3 Strip grid on a dielectric layer of varying thickness 

In practice the strip grid is often laser etched into a metallic layer 
deposited on the one side of a dielectric supporting structure. It is 
therefore of interest to investigate the performance of a strip grid 
located directly on the one side of a dielectric sheet. 

The first example is very similar to the one in the previous section 
but the strip grid is now moved to the top surface of the dielectric 
instead of being located in the middle of the sheet. The thickness 
of the dielectric is the same, 7.5 mm, corresponding to λ /4 (λ  is 
the free space wavelength). The calculated results are shown in 
Figure 6-8. 
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Figure 6-8 Reflection coefficient for single strip grid located 

on the top side of a 7.5 mm thick dielectric with 
4rε = , s =  1.5 mm, w =  0.1 mm 

At normal incidence the agreement between GRASP9 and 
MESTIS is very good, but for increasing angle of incidence and 

0φ = °  the difference increases rapidly. For 90φ = °  the strip grid 
is orthogonal to the θ -direction and GRASP9 and MESTIS pro-
vide the same result. 

Realistic dielectric supporting structures are much thinner than 
the plate in Figure 6-8. We will therefore gradually reduce the 
thickness of the dielectric until we get the same good agreement 
as for the strip grid in free space in Figure 6-4. 

Figure 6-9 shows the result for a dielectric plate 3.75 mm thick. 
The agreement between MESTIS and GRASP9 is virtually unaf-
fected compared to Figure 6-8. 
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Figure 6-9 Reflection coefficient for single strip grid located 

on the top side of a 3.75 mm thick dielectric with 
4rε = , s =  1.5 mm, w =  0.1 mm 

The difference between MESTIS and GRASP9 continues to exist 
when reducing the dielectric thickness. Even for a thickness as 
small as 0.1 mm, corresponding to /300λ , we get the result in 
Figure 6-10. Now the difference starts to disappear when the 
thickness is further reduced and Figure 6-11 shows the result 
when the thickness is 0.01 mm ( /3000λ ) and the agreement is 
now almost as good as for the strip grid in free space, cf. 
Figure 6-4. 

The MESTIS results presented in this section have been verified 
by ASG. They show that when a strip grid is located on the sur-
face of a dielectric the approximate method in GRASP9 is good at 
normal incidence but it starts to deteriorate as the incidence an-
gle increases. This behaviour is almost independent of the thick-
ness of the dielectric until it becomes as thin as /300λ  where it 
starts to disappear. This discrepancy between MESTIS and 
GRASP9 is apparently isolated to an extremely thin layer around 
the strip grid and it seems likely that the GRASP9 expressions 
can be improved by simple means taking into account the differ-
ence in dielectric constant on the two sides of the grid. 
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Figure 6-10 Reflection coefficient for single strip grid located 

on the top side of a 0.1 mm thick dielectric with 
4rε = , s =  1.5 mm, w =  0.1 mm 
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Figure 6-11 Reflection coefficient for single strip grid located 

on the top side of a 0.01 mm thick dielectric with 
4rε = , s =  1.5 mm, w =  0.1 mm 
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6.2.4 Strip grid at varying heights above a dielectric layer 

It was demonstrated in the previous section that the approximate 
formulas in GRASP9 give rise to small errors when a strip grid is 
located directly on the surface of a dielectric. We know from past 
experience that the simple formulas work well if there is a dis-
tance between the strip grid and the dielectric. It is therefore of 
interest to find out the lower level of this distance where we still 
get acceptable results. 

Figure 6-12 shows the reflection coefficient for the case where the 
strip grid is located 4 mm above a dielectric plate, 3.75 mm thick 
and with a relative permittivity of 4. We see that the agreement 
between MESTIS and GRASP9 is very good and almost as good as 
for the strip grid in free space, cf. Figure 6-4. 
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Figure 6-12 Reflection coefficient for single strip grid with  

s =  1.5 mm, w =  0.1 mm, located 4 mm above a 
3.75 mm thick dielectric with 4rε = . 

Reducing the height of the strip grid above the dielectric gradu-
ally to zero must necessarily end with the result shown in 
Figure 6-9. Figure 6-13 and Figure 6-14 show the results for a 
height of 0.3 mm ( /100λ ) and 0.06 mm ( /500λ ), respectively. It is 
surprising to notice, that the spacing of the strips is five times 
larger than the distance to the dielectric plate in Figure 6-13, but 
still the free space cascading used in GRASP9 works very well. In 
Figure 6-14 the result starts to approach the zero height result in 
Figure 6-9. 
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Figure 6-13 Reflection coefficient for single strip grid with  

s =  1.5 mm, w =  0.1 mm, located 0.3 mm 
( /100λ ) above a 3.75 mm thick dielectric with 

4rε = . 
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Figure 6-14 Reflection coefficient for single strip grid with  

s =  1.5 mm, w =  0.1 mm, located 0.06 mm 
( /500λ ) above a 3.75 mm thick dielectric with 

4rε = . 
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6.3 Rectangular meshes 

In this section we investigate two orthogonal strip grids in the 
same plane and in electrical contact at all intersection points. The 
parameters selected for the test case are 

frequency = 10 GHz ( 30λ =  mm) 
spacing of x-directed strips, xs  = 1.5 mm 
spacing of y-directed strips, ys  = 3.0 mm 
strip width, w  = 0.2 mm 

and the calculated results are shown in Figure 6-15. 
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Figure 6-15 Reflection coefficient for rectangular mesh, 

spacing of x-directed strips, 1.5 mm 
spacing of y-directed strips, 3.0 mm 
strip width, 0.2 mm 

The agreement between MESTIS and the simple formulas by As-
trakhan used in GRASP9 is very good. It is particularly interest-
ing to notice that for incidence in the yz -plane, 90φ = ° , the re-
flection coefficient decreases rapidly with the angle of incidence 
and this is in contrast to what we have seen for single strip grids. 
We have therefore repeated the calculation for a single strip grid 
with the same parameters as for the y -directed strips of the rec-
tangular mesh and the result can be seen in Figure 6-16. For 
normal incidence, 0θ φ= = ° , we get the same result as for the 
rectangular mesh for 0 , 90θ φ= ° = ° , but away from the normal 
the reflection increases. The existence of the x -directed strips of 
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the rectangular mesh therefore reduces the reflection rather in-
creasing it. This property is in fact already pointed out by Astra-
khan by saying that the screening properties of a rectangular 
mesh are best if the wires forming the mesh are insulated. 
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Figure 6-16 Reflection coefficient for single strip grid in free 

space, s =  3.0 mm, w =  0.2 mm 
The 0φ = °  response of this figure should be com-
pared to the 90φ = °  response of Figure 6-15. 

6.4 Conclusions from Chapter 6  

The results presented in this chapter have demonstrated that 
when a strip grid is located in free space there is a very good 
agreement between the simple formulas used in GRASP9 and the 
rigorous solution obtained by MESTIS or ASG. It has also been 
shown that when a strip grid is located directly on the surface of a 
dielectric some discrepancies occur, but when the strip grid is 
lifted even a very small distance above the dielectric these prob-
lems disappear again. 

When a strip grid is located inside a dielectric the simple formulas 
break down for incidence angles other than normal incidence. 
However, since the simple method works well in free space it 
must be possible to modify it to the actual wavelength and direc-
tion of incidence inside the dielectric. This approach will work as 
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long as the strip grid is not too close to the front or rear surface of 
the dielectric. 

The results presented in Section 6.2.3 showed that when a strip 
grid is located directly on the surface of a dielectric the approxi-
mate method in GRASP9 is good at normal incidence but it starts 
to deteriorate as the incidence angle increases. This discrepancy 
was found to be isolated to an extremely thin layer around the 
strip grid and it was concluded that the GRASP9 expressions can 
possibly be improved by simple means taking into account the dif-
ference in dielectric constant on the two sides of the grid. 
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7   The PZM Method applied to the frequency selective radome 

7.1 Introduction 
Frequency selective surfaces (FSS) [1][2] are widely used for the realization of polarizers and dichroic 
reflectors. Due to the large dimensions of these structures, the analysis is usually performed by resorting to 
high-frequency techniques, such as Physical Optics (PO) or Geometrical Optics (GO), sometimes 
augmented by diffraction theories (PTD, UTD, ITD). In these framework, it would be desirable to have a 
simple and accurate surface impedance model of periodic surfaces, to be interfaced with existing high-
frequency electromagnetic simulation tools. 

Recently, a method has been introduced for the efficient synthesis of the FSS admittance (patch-type FSS) 
or impedance (aperture-type FSS) matrix, focused on the study of dispersion properties of FSS-based 
artificial surfaces [3][4][5]. This method is based on the application of the Foster’s reactance theorem [6], 
which implies that FSS admittance functions of frequency satisfy the pole-zero analytical properties of the 
driving point LC admittance functions [7]. The identification of the poles and zeros of the FSS equivalent 
admittance allows a reconstruction of the surface response over a large frequency band. The FSS equivalent 
admittance/impedance is derived directly from the method of moment (MoM) matrix, by a proper projection 
onto the Floquet modes. 

In this work, the method is extended to the analysis and synthesis of FSS with losses. The method allows to 
synthesize the scattering response of a FSS, from the identification of a few parameters (poles and residues 
of the equivalent FSS admittance/impedance matrix) which exhibit a weak dependence on the angle of 
incidence. This property implies a MoM analysis of the FSS for a limited set of incidence angles. The overall 
response is then interpolated with a numerically efficient algorithm. Unlike the technique described in [7], 
here the analytical matching of pole and zeros is substituted with an analytical matching of poles and 
residues; this allows the generalization of the generalized Foster’s properties to all the terms of the 
admittance (impedance) matrix in case of losses. 

This report is organized as follow. Sec. 1 provides a brief overview of the spectral domain Floquet waves 
(FW)-based Method of Moment, for both patch-type and aperture-type FSS. In Sec. 2, a FW-based network 
and the dominant mode two-ports admittance network are defined. Sec. 3 presents same important 
properties of the two-ports FSS-network matrices and it indicates how they can be used in order to obtain an 
analytical approximation of the FSS-network matrix entries. In Sec. 4 an application oriented algorithm is 
presented for the use of the method in conjunction with ray-tracing techniques. In Sec.5 the analytical form 
for the scattering matrix is conveniently used in ray-tracing algorithms, based on local flat-surface 
approximations of curved FSS, to evaluate the radiation pattern of an antenna enclosed by a FSS radome; 
numerical results obtained for the radiation pattern of the antenna radiating in free space, of the antenna 
enclosed by a dielectric and FSS radome are compared. 

7.2  MoM Solution 
Let us consider an infinite planar FSS consisting of patches printed on a multilayer dielectric slab. We will 
first describe the MoM analysis associated with patch-type FSS and next we will briefly present the results to 
aperture-type FSS obtained with a similar process. A rectangular (x,y,z) reference system is assumed with 
the z axis orthogonal to the FSS and the origin at the FSS level. The periodicities of the FSS are dx and dy 
along x and y, respectively. An incident, either transverse electric (TE) or transverse magnetic (TM), plane 
wave is assumed to illuminate the structure, with zero phase at the origin of the reference system. The 
incident plane wave imposes a phasing kx and ky in the principal directions, with 2 2 2 2/x yk k cω+ < . 

The numerical computation of the equivalent currents at the interface of the planar periodic structure is 
performed via a numerical solution of the electric field integral equation (EFIE) by using a spectral periodic 
MoM approach. More than discussing the numerical implication of the MoM scheme, our objective here is to 
construct an appropriate form of the admittance matrix to characterize the FSS surface.  
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Fig. 1 A planar patch-type FSS and relevant plane wave excitation for TE and TM polarization. 

 

Due to the periodicity of the problem, the analysis can be reduced to that of a single periodic cell, with 
phase-shift boundary conditions applied to the ideal vertical walls. By applying the equivalence theorem (Fig. 
2), an electric current distribution is assumed on the region of the metallic patches, radiating with the Green’s 
function (GF) of the grounded slab. By imposing the boundary conditions on the surface of the metallic 
patches, the EFIE is derived, as follows: 

 ( ) 0s imp+ =E J E  (1) 

where Es is the field radiated by the currents J induced on the dipoles, and Eimp = Einc+Eref  is the 
impressed field at the interface (in the absence of printed dipoles), which is given by the sum of the incident 
(Einc) and reflected (Eref) fields. From here on, the bold characters indicate vectors and the carets indicate 
unit vectors. As suggested by Tascone and Orta in [2], the equivalent currents J are expressed in terms of 
basis functions, 

 
1

( ) ( )
N

n n
n

I
=

= ∑t tJ r   f r  (2) 

where ˆ ˆt xx yy= +r  denotes the two-dimensional space vector. Fig. 2 shows sub-domain triangular basis 
functions, but entire domain basis functions can be used as well. 

 

(a) (b)(a) (b)  
 

Fig. 2 Application of the equivalence principle to the basic cell of (a) patch-type FSS and (b) aperture-type FSS. Phase 
shift conditions are imposed on the vertical walls. A triangular mesh is shown, with sub-domain basis functions used for 

the expansion of  the electric. 

 

Let us denote by ' 2 '/xp x xk k p dπ= + , ' 2 '/yq y yk k q dπ= +  the FW wavenumbers in the x and y direction, 
respectively, and by ' 'ˆ ˆq xp yqk x k y= +k  the relevant vector form, where q  denotes the two FW indices ( ', ')p q . 



By denoting with qβ  the nodes of the reciprocal lattice, 2 ' 2 'ˆ ˆ
x y

p q
q d dx yπ π= +β , and with k the impressed vector 

wavenumber, ˆ ˆx yk x k y= +k , we obtain q q= +k k β , with q=0, 1, 2… and 0 =k k  by definition. It is also 
useful to introduce the normalized spectral vectors 

 ˆˆ ˆˆq
q q q

q q

zσ α σ= = ×
⋅

k
  ;       

k k
 (3) 

as a spectral basis to describe TM and TE field components, respectively. By using a Galerkin spectral MoM 
approach, Eq. (1) is reduced to the matrix equation 

 MOMZ I V=  (4) 

where { } 1,

T
m m N

V V
=

=  is the known column vector of the complex amplitude of the impressed field on the nf  

basis, { } 1,

T
n n N

I I
=

= is the column vector of the current expansion, and { }
, 1,MoM

MoM
nm n m N

Z Z
=

=  is the MoM 

impedance matrix, with entries given in an appropriate TE/TM form via  

 
1

*

0

ˆ ˆˆ ˆ( ) [ ( ) ( ) ] ( )
M

MoM TM TE
mn m q GF q q q GF q q q n q

q

Z Z Zσ σ α α
−

=

= ⋅ + ⋅∑F k k k F k  (5) 

In (5), ( ) ( )]n mF k  [F k is the Fourier transform of the basis [test] function ( ) [ ( )]n mt tf r  f r , sampled at the FW 
wavenumbers qk , and / ( )TM E

GFZ k  are the TM/TE components of the individual element spectral electric field 

GF, sampled at the vector FW wavenumber qk . In (5), the modal FW expansion is truncated at the integer 
M-1 with M larger than N; this is an obvious consequence of the continuity of the FW on the entire periodicity 
cell, which implies the use of more FW modes than basis functions to describe the patch current. The GF 
impedances can be found by solving the pertinent transmission line problem representing the stratification 
for the TE and TM case. The MoM matrix can be expressed in the compact form as 

 
H

MoM GFZ Q Z Q=  (6) 

where { }
0, 1

( ), ( )TM TE
GF GF q GF q q M

Z diag Z Z
= −

= k k  is a diagonal 2 2M M×  matrix, { } 0, 1
1,

, ,, q M
n N

TM TE
q n q nQ Q Q = −

=

=  is a 2M N×  

matrix and { } 1,
0, 1

* *
, ,,

H

m N
q M

TTM TE
m q m qQ Q Q

=
= −

=   is an 2N M×  matrix, the superscript H denoting transpose conjugate. 

The entries of the Q matrices are given by , ˆ( )TM
i q i q qQ σ= ⋅F k , , ˆ( )TE

i q i q qQ α= ⋅F k  (i=n,m). 

For an aperture-type FSS, the FSS is substituted by a continuous, infinitely thin PEC screen with magnetic 
current distribution on both sides; these currents have equal amplitude and opposite signs on the two 
different sides to ensure the continuity of the electric field through the aperture. The integral equation which 
imposes the continuity of the magnetic field is ( ) ( )s imp s

+ −+ = −H M H H M , where the superscript + and – 
refer to the Green’s function of the upper and lower region, respectively. The magnetic current is expanded 
in terms of basis functions  

 
1

ˆ( ) ( )
N

n n
n

V z
=

= ×∑t tM r g r  (7) 

Imposing the continuity of the magnetic field leads to the following representation 

 MoMY V I=  (8) 

where { } 1,

T
n n N

V V
=

=  is the unknown column vector, { } *
1,

,  G ( ) H ( )T
m m m impm N

I I I
=

= = − ⋅k k is the known 

column vector of the impressed magnetic field on the MoM basis. The MoM matrix may be expressed in the 
compact form  
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MoM GFY P Y P=  (9) 



where { }
1

1,
( ), ( )TM TE

GF GFGF q GF q q M
Y diag Y Y Z

−

=
= =k k  is a diagonal 2 2M M×  matrix, obtained by solving 

the GF z-transmission line for each FW wavevector,  { } 1,
0, 1

* *
, ,,

H

m N
q M

TTM TE
m q m qP P P

=
= −

=  is an 2N M×  matrix, and 

{ } 0, 1
1,

, ,, q M
n N

TM TE
q n q nP P P = −

=

=  is a 2M N×  matrix, whose components are given by , ˆ( )TM
i q i q qP σ= ⋅G k , 

, ˆ( )TE
i q i q qQ α= ⋅G k  (i=n,m), being ( )iG k  the Fourier transform of ( )i tg r . 

 

7.3 Dominant-mode two-port admittance network  
Let us assume that we are observing the field at a certain distance z from the FSS. In this case, the FW 
modes that are completely attenuated do not contribute to the field at z. In a multimode network description, 
this implies that the relevant modal ports can be considered as not “accessible” to the observer, and 
therefore neglected. This concept was introduced by Rozzi [8] for waveguide problems and is commonly 
used to calculate the coupling between FSSs located at different levels [2]. When we are dealing with the 
scattering from an FSS, the only accessible mode is the propagating one. Consider the 2 -port network in 
Fig. 3, where each port is associated to an FW mode of TE or TM type. This network consists of a  2 -port 
“FSS network” loaded in parallel at each port by a modal TE or TM transmission line representing the 
unprinted multilayer dielectric slab. The FSS-network is conveniently characterized by 2 2×  admittance 
(impedance) matrices  

 
FSS

FW FWFSSI Y V=  (10) 

for patch-type FSS 

 
FSS

FWFW FSSV Z I=  (11) 

for aperture-type FSS, where 
, , 0,1[ , ]FSS T

FW FW q FW q

TM TE
qI I I ==  (

, , 0,1[ , ]T
FW FW q FW q

TM TE
qV V V == ), is the vector of the FW 

amplitudes of the magnetic (electric) field expansion at the FSS level and denotes the FW electric current 
flowing into the FSS network (the FW voltage at the ports).  

The FSS-network matrices are given as a function of MoMZ  matrix as 

 ( ) ( )
11 1

( , ; )
H H

FSS MoM GF MoM GFx yY k k q Z q Y q Z q Yω
−− −⎡ ⎤= −⎢ ⎥⎣ ⎦

      (12) 

for patch-type FSS, and 0 0 1 1( ),  ( );  ( ) ( )TM TE TE TMY Y Y Yk k k k  are the modal z-transmission line TE-TM 
characteristic admittances relevant to the free-space (subscript 0) and the dielectric regions (subscript 1), 

respectively, and 2 2 2
z x yk k k k= − −  and 2 2 2

1z r x yk k k kε= − −  

 ( ) ( )
11 1

( , ; )
H H

FSS MoM GF MoM GFx yZ k k p Y p Z p Y p Zω
−− −⎡ ⎤= −⎢ ⎥⎣ ⎦

   (13) 

for aperture-type FSS. In (12)- (13), the dependence on the frequency and on the impressed wave vector 
has been emphasized, and { } { }0, 1 0, 1

1, 1,
, , , ,, , ,q M q MA A

n N n N

TM TE TM TE
q n q n q n q nq Q Q p P P= − = −

= =

= =  , are matrices of size 2 AM N× which 

project the MoM basis onto the FW basis (and vice versa for their transpose conjugate Hq  and Hp . 
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Fig. 3 (a), Two-port modal network relevant to propagating the TE and TM FW-mode. (b) Diagram ( , )x yk k ω−  (the figures 

refer to a case dx > dy).Below the two portions of the upper conical surfaces, the higher order FW modes  are cut off. 
This region identifies the validity of the FSS-network in (a). The free-space speed of light is denoted by c. The “light 

cone” is also depicted, and its surface identifies the cut-off of the dominant propagating mode. 

As previously stated, the utilization of a two-port network, implies that all the higher-order FW-modes must 
be cut off. The cut-off condition of the higher-order FW-modes implies a limitation to the observable 
dispersion diagram. Figure 4b shows a dispersion diagram with angular frequency ω on the vertical axis and 
the wavenumbers kx, and ky on the horizontal axes. Due to the periodicity of the FW spectrum, the 
observation may be restricted to the Brillouin region ( , )

x x y yd d d dx xk kπ π π π− < < − < < , with a further (due to the 

symmetry of the structure) restriction to positive values of kx and ky. The cut-off region for higher-order 
modes is imposed by the conditions 2 2 2 2/x yk k cξ η ω+ >  for ( , ) (0,0)ξ η ≠ . As a consequence, within the 
observed wavenumber plane, the cut-off region is delimited by portions of two cones whose vertices are at 
the FW wavenumbers closest to the origin (details are shown in Fig. 4b). A third cone is depicted in the same 
figure; its surface 2 2 2 2/x yk k cω+ =  defines the cut-off of the dominant mode. Although this cone is not essential 
for the validity of the two-port model, it bounds the slow-wave region and is important for the study of the 
dispersion properties. Intersections of this cone with the vertical planes ω-kx and ω-ky identify the well-known 
“light lines” in these two planes. Figure 4b also shows the horizontal plane max( , )M x yc d dω ω π= = , which is 
the minimum frequency at which the higher-order FW modes are attenuated for any wavenumber. 

7.4 Properties of FSS-network matrix entries 
Here we describe the properties of the two-port FSS matrix entries in order to establish a convenient 
analytical form. For the sake of convenience, let as consider each element of  the matrix as a function 
dependent on θ  and φ , where  0 sin cosxk k θ φ=  and 0 sin sinyk k θ φ= . In this case, the cut-off region shown 
i3.4.3. n Fig. 3b can be expressed as a function of θ  and φ , obtaining the surfaces presented in Fig. 4. 
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Fig. 4 Mono-modal propagation region for the fundamental FW ( , )θ φ ω−  (the figures refer to a case dx > dy).Below the 

two portions of the upper surfaces ( )1 ,ω θ φ  and ( )2 ,ω θ φ , the higher order FW modes  are cut off. This region identifies the 
validity of the FSS-network in Fig.4(a). The free-space speed of light is denoted by c. The  “light plane” is also depicted, 

and its surface identifies the cut-off of the dominant propagating mode. 

 

7.4.1 Absence of losses 
Consider for simplicity the patch-type FSS and denote by ( ), ,ij

FSSY θ φ ω the entries of the two-port dominant 
mode admittance matrix. In the absence of losses, the equivalent FSS admittance is purely reactive for every 
ω . Note that this is valid within the cut-off region of the higher-order FW-modes described in Fig. 4; indeed, 
for frequency where another pair of TE-TM modes is propagating, the two-port FSS matrix loses its 
properties to be purely reactive. The imaginary part of the (purely imaginary) entries, seen as a function of 
frequency, possesses the same pole structure of a passive LC admittance matrix, with capacitive behavior at 
low frequency. Moreover, from network theory, it can be demonstrated that all the entries of the FSS-network 
matrix have the same poles [9]. Thus, the properties of the FSS matrix entries are 

• All the entries ( ), ,ij
FSSY θ φ ω possess the same poles; 

• The poles lie on the real ω -axis and are simple; 

• A zero must be in 0ω = ; 

• The poles are symmetrically displaced with respect to the origin; 

An important consequence of these properties is that the admittance frequency function can be 
approximated by the following limited-bandwidth expression 

 ( ) ( )
( ) ( )02 2

1

2 ,
, , ,

,

ijN
nij ij

FSS
n n

ja
Y ja

θ φ ω
θ φ ω θ φ ω

ω β θ φ=

−
= +

−∑  (14) 

In (14) the following properties hold 

( ),ij
na θ φ  represents the (ω -independent) residue associated to the n-th pole in the ω -plane and it is a real 

function of the incident angle. For the diagonal entries ( ),ii
na θ φ  is real and positive; 

 

 

 



7.4.2 Small losses 
In the case of small losses, each FSS network matrix entry can be approximated as  

 ( ) ( )
( ) ( ) ( )02 2

1

2 ,
, , ,

, ,

ijN
nij ij

FSS
n n n

ja
Y ja

j
θ φ ω

θ φ ω θ φ ω
ω β θ φ ωγ θ φ=

−
= +

− −∑  (15) 

Same expression can be written for ( ), ,ij
FSSZ θ φ ω  entries for aperture-type FSS. 

In (15) small losses have been assumed, i.e. ( ) ( ), ,n nβ θ φ γ θ φ>> , so that ( ), / 2nγ θ φ−  and ( ),nβ θ φ  
are the real and imaginary part of the pole respectively. Under the small losses assumption the poles are 
very close to the real ω -axis and their position in the complex ω -plane can be evaluated from the real axis 
frequency variation of the imaginary part of the matrix entries. The following properties are verified: 

( ),ij
na θ φ represents the ω -independent residue associated to the n-th pole and in the ω -plane it is a real 

function of the incidence angle. For diagonal entries ( ),ii
na θ φ  real and positive; 

The quantities ( ) ( )0 , , ,ii iia aθ φ θ φ∞ are independent on ω  and represent the quasi-static capacitance 

(inductance) of the patch-type (aperture type) FSS. Their dependence on ( ),θ φ  is found to be very weak 
and thus very easy to approximate; 

Equation (1.15) allows an analytical definition of the admittance (impedance), over a broad frequency range, 
on the basis of the determination of the aspect-dependent poles and residues. As will be discussed later on, 
they can be calculated for a few values of the incidence angles , and can then be approximated. 

We note that the numerical calculation of FSSY  in (15) is accurate at those angles where FSSY exhibits poles 
or zeros, because the MoM matrix is there well-conditioned.  

 

7.5 Approximation of poles and residue 
From the approximation (15), the analytical representation of the FSS in a broad frequency range can be 
derived from the following functions 

 ( ) ( ) ( ) ( )0, , , , , , ,ij ij
n n na aθ φ β θ φ γ θ φ θ φ  (16) 

In many practical cases, the poles that should be considered are very few. As a practical rule the 
approximation is very good if one includes the poles within the frequency range of interest plus the closer 
one outside the same range. Since in many cases the properties of the FSS are used at low frequency 
regime or close to the first resonance, the inclusion of one or two poles is satisfactory in most of the cases. 

All the functions in (16) show a very weak variation against the incidence angles and are easy to 
approximate from the data related to a few angular samples by a simple trigonometric polynomial form 

 
1 2

1 2 1 2

1 2

2 1 2 1
0 0

( , ) cos( ) cos(2 ) sin( )sin(2 )
N N

ij
n n n n n

n n

n n n nθ φ δ φ θ η φ θ
= =

⎡ ⎤Ψ = +⎣ ⎦∑∑  (17) 

where 
1 2n nδ  and 

1 2n nη  are coefficients calculated on the basis of a least mean square approximation. In 
many practical cases, N1 and N2 are very small integer numbers. 
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Fig. 5  Approximated poles and residue surfaces for a ring-dipole FSS. (a) Structure layout; Dx= 0.38λ0, Dy= 0.4λ0, L= 
0.3λ0, w= 0.06λ0 (b) Approximated surfaces for a residue ( )11

2 ,a θ φ . (c) An example of an approximated surfaces for the 

real part of one pole ( )11
2 ,β θ φ and (d) for the imaginary part of one pole ( )11

2 ,γ θ φ . For all this function the approximated 
surfaces have been evaluated with N1=2 and N2=1.  

 

7.6 Application-oriented algorithm 
The analysis of curved FSS reflectors or frequency selective radomes, which are large in terms of a 
wavelength, are often based on the flat surface approximation of the local curved structure and on the 
decomposition of the illuminating wave in terms of local rays or beams. This schemes use local reflection 
and transmission coefficients to calculate local currents or scattered fields, thus requiring the calculation of 
the scattering matrix for a large number of incident aspects and frequencies. The pole-residue method 
described here allows an agile transmission of data from a EM solver for the analysis of FSS and a EM 
solver based on high-frequency (HF) method (e.g. Physical Optics, Geometric Optics, etc..). The present 
polo-residue matching scheme, thanks to the capability to reconstruct an analytical form of the admittance 
matrix, with the use of few parameters, establishes a link from the FSS solver and the HF solver by 
exchanging data relevant to the few interpolation coefficients. The logical scheme of this data exchange is 
shown in Fig.6. Data, relevant to an angular under sampling of the FSS matrix entries, feed a “Data 
Compressor” which calculates the coefficients of the least mean square approximation of poles and 
residues. The coefficients 

1 2n nδ  and 
1 2n nη  are thus transmitted to the HF solver which is provided by a 

“Decoder Module”. This module constructs the analytical form of ( ), ,FSSY θ φ ω  over continuous angles and 
frequencies. From this latter matrix, the scattering matrix is obtained from simple algebraic manipulations. 
This scheme does not alter the internal architecture of the solvers and implies a pre-processing time which is 
negligible with respect to the overall calculation time. 

FSS solver HF solver

' ' '

Angular under sampling:

( , , )FSS n m iY θ φ ω

Data Compressor
( Encoder)

,nm nmδ η

Decoder

Analytical representation:

 ( , , )FSSY θ φ ω

FSS solver HF solver

' ' '

Angular under sampling:

( , , )FSS n m iY θ φ ω

Data Compressor
( Encoder)

,nm nmδ η

Decoder

Analytical representation:

 ( , , )FSSY θ φ ω
 

Fig. 6 Logical structure of the data compression algorithm. 



7.7  Numerical results for a FSS radome 
In order to analyze the impact of the FSS radome on the antenna performance, curvature effects must be 
included in the analysis. However, a rigorous study poses serious mathematical problems, forcing the use of 
approximate techniques. The reciprocity theorem is applied to estimate the pattern of the antenna enclosed 
by the FSS radome as the reaction between the current distribution on the antenna surface and the field 
transmitted through the radome when illuminated by an incident plane wave. Under the hypothesis of 
electrically large radome, the transmitted field is computed by ray techniques, taking into account the 
presence of the radome through a dyadic transmission matrix. An analytical expression of this latter, 
describing its dependence on the incidence angle and frequency, is obtained through a generalization of the 
Pole-Residue Matching method as described above. 
 
The FSS geometry consists on a rectangular lattice with  Dx= 0.38λ0 and Dy= 0.4λ0. The basic element of 
the FSS is a rectangular slot with a length L= 0.3λ0 and a width w= 0.06λ0, where λ0 is the wavelength of the 
free space at the frequency f0.  FSS layout is shown in Fig. 7. The FSS has been designed in order to be 
transparent at the operating frequency f0 of the antenna; in this way the slot FSS operates has a pass-band 
filter around frequency f0. 

 

 
Fig. 7 FSS layout. 

When a plane wave, at frequency f0, impinges on the structure (antennas covered by a radome), with an 
electric field polarization orthogonal to the slot orientation, the module and the phase of the electric field 
transmitted on the antenna’s plane are like that shown in Fig.8 and Fig.9. In particular Fig.8 shows the 
results for a dielectric radome, while Fig.9  those for a FSS radome. 

As we can see, at the operating frequency f0, the copolar componens of the transmitted field are 
approximately the same either for the module or for the phase in both cases; concerning the cross-polar 
component they are more than 15dB down the copolar one.  



 
Fig. 8 Module and phase of the electric field components transmitted on the antenna’s plane by a dielectric radome for 
an impinging plane wave with electric field polarized along y direction (orthogonal to slot direction) at the frequency f0. 

 
Fig. 9 Module and phase of the electric field components transmitted on the antenna’s plane by a FSS radome for an 
impinging plane wave with electric field polarized along y direction  (orthogonal to slot direction) at the frequency f0. 

In Fig.9 it is possible to see the polarization selectivity of the FSS radome for an impinging plane wave with 
electric field polarization parallel to the slot direction, at the frequency f0. Outside the pass-band of the FSS, 
the frequency selective behaviour of the FSS radome is shown in Fig. 

 



 
Fig. 10 Comparison between the module the electric field components transmitted on the antenna’s plane by dielectric 
radome (upper part of the figure) and a FSS radome  (lower part of the figure) for an impinging plane wave with electric 

field polarized along x direction  (parallel to slot direction) at the frequency f0. 

 
Fig. 11 Comparison between the module the electric field components transmitted on the antenna’s plane by dielectric 
radome (upper part of the figure) and a FSS radome  (lower part of the figure) for an impinging plane wave with electric 

field polarized along y direction  (ortogonal to slot direction) at the frequency 0.75f0. 

The radiation pattern of the antenna enclosed by the radome can be evaluated by the reaction integral 
between the equivalent currents on the antenna’ s plane and the transmitted field. Numerical results are 
shown in Fig and Fig for the operating frequency f0 and outside the pass-band at 0.75 f0 respectively. 



 
Fig. 12 (a) E-plane and (b) H-plane radiation pattern of the antenna at operating frequency f0; dotted line refers to the 

radiation pattern of the antenna when it radiate in free space, dash-dotted line refers to the radiation pattern of the 
antenna enclosed by a dielectric radome and the continuous line refers to the radiation pattern of the antenna enclosed 

by the FSS radome.  

 

 

 
Fig. 13 (a) E-plane and (b) H-plane radiation pattern of the antenna at frequency 0.75 f0 ouside the pass-band of the 

FSS; dotted line refers to the radiation pattern of the antenna when it radiate in free space, dash-dotted line refers to the 
radiation pattern of the antenna enclosed by a dielectric radome and the continuous line refers to the radiation pattern of 

the antenna enclosed by the FSS radome.  

7.8 CONCLUSION 
In this paper, a method for obtaining the analytical solution of the admittance (scattering) matrix of FSSs is 
presented. This method has been illustrated here with reference to a patch-type FSS or aperture-type FSS. 
On the basis of a spectral MoM solution, an equivalent network-matrix is defined with the ports 
corresponding to the accessible TE and TM FW of the exact Floquet expansion. The admittance matrix is 
then characterized by poles and residues associated to the matrix entries for a few values of the incidence 
angles. The identification of a set of surfaces associated with the poles and residue of the FSS and their 
regularity allows the interpolations of these surfaces by low-order polynomials. Network theory properties 
allow the approximation of the entries in terms of summation of rational functions. The consequent closed 
form expression is applied to evaluate the generalized scattering matrix as a function of the angle and 
polarization of incidence plane wave.  



It is worth remarking that the full-wave analysis for each incident aspect ( ),θ φ  is very efficient, since it 
implies the inversion of a moderate size MoM matrix; however, obtaining accurate information on the 
continuous ( ),θ φ  domain requires a large amount of computational time. The main peculiarity of the method 
presented here is concerned with the possibility of reconstructing an analytical closed form the generalized 
scattering matrix in the continuous ( ),θ φ  domain over a large frequency range, starting from the response of 
the structure at a few samples. This is particularly useful to establish a link between an FSS solver and an 
HF solver for the analysis of large FSS curved structure or frequency selective radome no matter about the 
internal code solver structure. The general process described here can be applied for the synthetic 
description of different wave phenomena, like those relevant to surface wave propagation and 
electromagnetic band-gap description, near-field interaction (Green’s function) and wave diffraction involving 
periodic surfaces. 
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