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Abstract 

The present document is a comprehensive collection of methods and models for the  analysis and 
prediction of surface reflection and transmission characteristics. The different types of surfaces 
are discussed and various accurate and approximate analysis methods of the partners are pre-
sented. Chapter 5 gives a number of specific applications of the more general methods presented. 
Here the applications are ordered according to the surface type. 
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1. INTRODUCTION 

Reflector surfaces for communications and future medical applications often 
use special materials such as frequency and polarisation sensitive surfaces 
to separate different frequency bands or orthogonal polarisation. It is ex-
pected that reflector antennas will continue to be used in particular for geo-
stationary satellites. 

In the general reflector antenna program, GRASP9, provided by TICRA a 
number of simple and approximate models for reflector surface materials are 
included, such as strip grids, dielectric layers etc. However, in many cases 
these models are not sufficiently accurate and this is especially the case for 
frequency selective surfaces (FSS). It is the purpose of the present catalogue 
to assist the user of reflector antennas and radomes to find the relevant in-
formation on available methods and software. 

The practical realisation of surface materials can be carried out in different 
ways. One approach is to laser etch a thin conducting layer into the desired 
pattern. This is the most general technique and can be used for both strip 
grids and FSS. Another approach is to cut narrow strips from a planar sheet 
of the material and then arranging them on the surface side by side. 

Dual curved reflectors give rise to special problems. Such reflectors are not 
unfurlable and this means that a planar surface material cannot be bent 
into the shape of the reflector without wrinkling. Consequently, the parame-
ters of the surface must inevitably vary across the reflector with a possible 
impact on the resonance frequency and the polarisation performance. 

It may be difficult to model the precise layout of a particular design and in 
most cases one will have to accept the approximations assuming the same 
material parameters and the same orientation all over the reflector surface.  

The work described in this report has been carried out as Work Package 
2.3-2 under the ACE (Antenna Centre of Excellence). The partners of this 
work package are 

TICRA (WP Leader), Denmark 
Politecnico di Torino, Italy 
University of Siena, Italy 
TNO, Netherlands Org. for Applied Scientific Research 
Lund University, Sweden 
Chalmers Tekniske Högskola, Sweden 
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The material is organised as follows. Chapter 2 subdivides the different 
types of surfaces into the following categories: perfect magnetic conductors, 
hard/soft surfaces, impedance surfaces, electromagnetic band gap surfaces, 
non-linear surfaces and penetrable surfaces. 

Chapter 3 presents the various analysis methods developed by the partners. 
Both methods in the time domain and in the frequency domain are included 
and equivalent transmission line models play an important role in many of 
the methods described. 

The methods in Chapter 3 are all relying on variations of the Method of 
Moments and the required computer time ban be substantial, depending on 
the complexity of the problem. For a realistic design problems it may be nec-
essary to use faster and perhaps more approximate solvers, especially if they 
are used inside an optimisation procedure. Chapter 4 presents some solu-
tions to this problem. 

Chapter 5 gives a number of specific applications of the more general meth-
ods presented in Chapter 3. Here the applications are ordered according to 
the surface type. Non-resonant surfaces comprise strip and wire grids as 
well as dielectric layers. Resonant surfaces include both thin and thick FSS 
structures and both single layer and multi-layer configurations are treated. 
Artificial and complex surfaces show examples of Perfect Magnetic Conduc-
tors (PMC) and electronic band gap (EBG) structures. Special surfaces are 
dealt with in Section 5.4 and cover Carbon Fibre Reinforced Plastic (CFRP) 
and honeycomb structure and here also the new light-weight triangular 
CRFP mesh is dealt with together with the tricot mesh for unfurlable reflec-
tors. Advanced topics are collected in Section 5.5 and include combinations of 
FSS and arrays, curved surfaces, edge effects and manufacturing tolerances. 

Each section in the report is written by only one partner in the team and the 
name of the partner is added to the heading of the section. In the case where 
several partners have contributed to the same topic these contributions are 
arranged as subsections with the heading being the name of the partner. 

Many of the methods presented in this report have been implemented in 
software packages. These computer programs are described in a separate 
volume of this report: “Catalogue of software for Reflector Surface Model-
ling”, Report WP2.3-2-02. 
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2. REFLECTOR SURFACE CATEGORIES 

2.1 Perfect Magnetic Conductor (PMC) – (Chalmers). 
The concept of surfaces that are made from perfect electric conductor (PEC) 
is used very often in electromagnetics. For example, when designing a reflec-
tor antenna or a reflector surface, one will make the assumption that the 
metal surface is made from PEC. This is a reasonable assumption since 
various metals (copper, aluminium, silver, gold) have very good conducting 
properties and the losses due to finite conductivity are often negligible or can 
be estimated separately. A similar concept can be made for surfaces made 
from perfect magnetic conductor (PMC). PMC surfaces have the characteris-
tic that electric current sources such as dipoles can be located at the surface 
and still radiate well. Thereby very low profile antennas can be realized [1], 
[2].  Other applications of PMCs are to realize waveguides that can support 
TEM waves [3]. For example, the dominant mode of a rectangular waveguide 
with two opposite PEC walls and two opposite PMC walls is a TEM mode 
with uniform field distribution and constant polarization over the cross-
section.  Unfortunately, there are no materials in nature that sufficiently 
well approximate a PMC at microwave frequencies. Therefore, there are at-
tempts to realize an artificial surface (usually a periodic structure) that will 
act as a PMC in some frequency band. Such a structure is called an artificial 
magnetic conductor (AMC). 

References 
[1] T.H. Liu, W.X. Zhang, M. Zhang, and K.F. Tsang, “Low profile spiral an-

tenna with PBG substrate,” Electron. Lett. Vol. 36, pp. 779-780, Apr. 
2000. 

[2] F. Yang, Y. Rahmat-Samii, “Reflection phase characterizations of the 
EBG ground plane for low profile wire antenna applications,” IEEE 
Trans. Antennas Propagat., vol. 51, pp. 12691-2703, Oct. 2003. 

[3] F-R. Yang, K-P. Ma, Y. Qian, T. Itoh, “A novel TEM waveguide using 
uniplanar compact photonic-bandgap (UC-PBG) structure”, IEEE Trans. 
Microwave Theory Tech., Vol. 47, No. 11, pp 2092 –2098, Nov. 1999. 

2.2 Hard/Soft (PEC/PMC strip) (Chalmers) 
The concept of PEC/PMC surfaces has been extended by considering elec-
tromagnetic waves propagating along the considered surface. Vertically po-
larized waves (i.e. plane waves with electric field normal to the surface) 
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propagate easily along a PEC surface (so-called GO-characteristic), but they 
cannot propagate along the PMC surface (so-called STOP-characteristic). 
Horizontally polarized waves have the opposite property (table 1). 

 

 

 

 

 

 

Table 1.  Characteristics of different types of surfaces with respect to 
propagation of surface waves for different polarizations. 

The soft and hard surfaces are anisotropic surfaces that for one polarization 
behave as a PEC surface and for the other like a PMC surface [1], [2]. The 
soft surface behaves like a perfect electric conductor (PEC) for a horizontally 
polarized wave, and as a perfect magnetic conductor (PMC) for a vertically 
polarized wave. The hard surface behaves opposite, see Table 1. In other 
words, the soft surface has STOP-characteristics for both polarizations, and 
the hard surface have GO-characteristics for both polarizations. The physical 
picture of an ideal soft-hard surface is a PEC/PMC strip grid with zero strip 
period, or in other words a surface with electric and magnetic conductivity in 
one (and the same) direction only, see Figure 2. One way to artificially real-
ize PMC strips is to use a quarter-wavelength transformer with a short cir-
cuit (PEC shunt) at the end of the transformer. In practice, this can be done 
by using corrugations or a strip-loaded grounded dielectric slab. 

 

 

    Figure 2    PEC/PMC strip 
    representations of ideal soft and 
    hard surfaces. The red and 
    green wave-shaped arrows 
    represent the direction of  
    propagation of the waves that 
    makes the PEC/PMC strip  
    surface soft and hard,  
    respectively. 

Surface name Polarization 
new classical VER HOR 

PEC GO STOP 
PMC STOP GO 
Soft STOP STOP 

 






AMC
PBG
EBG

 Hard GO GO 
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Recently, the concept of photonic band-gap (PBG) or electromagnetic band-
gap (EBG) structures has been introduced in electromagnetics to describe 
periodic structures along which or through which there is no propagation of 
electromagnetic wave in some frequency band [3]. There is a large similarity 
between concepts of EBG/PBG structures and soft/hard surfaces. If practical 
realizations are considered, the soft/hard surfaces are structures with perio-
dicity in one dimension, while the EBG/PBG structures have periodicity in 
two or three dimensions. 

References 
[1] P.-S. Kildal, "Definition of artificially soft and hard surfaces for electro-

magnetic waves", Electron. Lett., vol. 24, 3, pp. 168 -170, Feb. 1988. 
[2] P.-S. Kildal, "Artificially soft and hard surfaces in electromagnetics", 

IEEE Trans. Antennas Propagat., vol. 38, pp. 1537-1544, Oct 1990. 
[3] E. Yablonovitch, “Inhibited spontaneous emission in solid state physics 

and electronics,” Phy. Rev. Lett., vol. 58, pp. 2059-2062, 1987. 

2.3 Impedance (Siena) 
The usually approximate boundary condition in electromagnetic scattering 
has been an area of research for at least 40 years. Approximate Boundary 
Condition (ABC) can be used to eliminate many of the difficulties associated 
to the computation of the scattering of coated bodies. The concept of ABC is 
the postulate that the relationship between tangential electric and magnetic 
fields at any point between the exterior of the coated body and free space is a 
purely local one depending only on the coating directly below the point in 
question. Once the relationship of the field of the coated body is known it is 
not necessary to consider the field inside the coating has unknowns. The 
only true unknown is either tangential electric or magnetic field of the free 
space boundary, the other being obtained through the boundary condition. 
The simplest and the most widely used ABC is the Standard Impedance 
Boundary Condition (SIBC) [1]. In this case the tangential components of 
electric field are related to those of the magnetic field by a simple multiplica-
tion factor. This factor is obtained by solving the problem of the reflection of 
a normally incidence plane wave at the infinite grounded plane coated with 
the appropriate material. In its simplicity, this approximate boundary condi-
tion is accurate for some situation. This condition is met by very thin coat-
ings as well as by coating made up of material with high values of the reflec-
tive index or with significant loss. For coating with reflection characteristics 
strongly dependent of the angle of incidence the Standard Impedance 
Boundary Condition fails. The restriction of independence from angle of inci-
dence can be mitigated by incorporating derivatives of the field components 
in the boundary conditions. In this case the ABC are referred to generalized 
BC (GABC). Such BC introduced in [2] and more recently treated in [3] 
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References 
[1] M.A. Leontopich “Investigations of radio wave propagation part 2”, 

Moskow , Academy of Sciences, 1948 
[2] S.N. Carp and F.C. Karal “Generalized impedance BC with applications 

to surface wave structure” Electromagnetic Theory Part 1, pages:479-
483, pergamon press, NY, 1965 

[3] J.L.Volakis, and T.B.A. Senior, ”Application of generalized BC to scatter-
ing to metal backed dielectric half plane”, proceedings of the IEEE, 77(5): 
796-895, May 1989 

2.4 Electromagnetic Band Gap surfaces (Lund) 
Electromagnetic Band Gap surfaces make use of a resonant structure to cre-
ate band gap behaviour, i.e., for a band of frequencies no fixed frequency so-
lutions can exist in the material. With the acronym EBG we also include 
Frequency Selective Surfaces (FSS) and Photonic Band Gap (PBG). 

The main characteristics of EBG materials are contained in the dispersion 
relation, i.e., the relation between w and k, which usually has to be calcu-
lated numerically. It is usually represented in a band diagram as in the fig-
ure below. The main design issue when dealing with EBG is to design the 
microstructure such that the band gap is broad enough for all angles of inci-
dence (k vectors). Often one has to be satisfied with only a partial band gap, 
valid only for certain polarizations or angles of incidence. 

EBG materials have been a hot topic in the electromagnetic community for 
more than a decade, and have an even longer history in physics, originating 
in the early quantum mechanics. The major analytical tool is the Floquet-
Bloch representation, which transforms an arbitrary function into a periodic 
one, depending on the wave vector k. Most EBG designs are two-
dimensional. 
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Figure 1  A typical band plot, where normalized frequencies a c  
and wavevectors ak  are used, a being the physical size of 
the unit cell. The unit cell is depicted on the top left and has 
side 1, and the reciprocal unit cell (first Brillouin zone) has 
side 2π. The thin, shaded strip is the band gap, and the 
shaded region near the origin indicates where the dispersion 
relation is similar enough to that of a homogeneous material, 
i.e., a straight line, so that it can be considered homogeneous. 

In electromagnetics, EBG materials find applications such as Perfect Mag-
netic Conductors (PMC), which can be used to reduce the size of patch an-
tennas; a typical realization is the mushroom surface due to Sievenpiper, see 
also the above section on PMC. The band gap in EBG materials also prohib-
its surface wave propagation, which can be used to reduce edge diffraction 
and mutual coupling between elements in an antenna array. Recently, there 
has also been a huge interest in designing so-called meta-materials with 
negative permittivity and permeability. 

References 
[1] E. Yablonovitch. Photonic Band Gap Crystals. J. Phys.: Condens. Matter, 

Vol. 5, pp. 2443-60, 1993. 
[2] IEEE Transactions on Antennas and Propagation, Special issue on meta- 

materials, part I. Vol. 51, No. 10, 2003. 
 

2.5 Penetrable Surfaces (Siena)  
In some cases the Impedance Boundary Condition cannot be applied because 
of strong interaction between the interface material surface and the medium 
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behind. In this case one may resort to some approximations, which any way 
simplify any boundary value problems based on equivalent transmission line 
orthogonal to the surface. This transmission line may be applicable, for in-
stance, to periodic printed structure in stratified media as Frequency Selec-
tive Surfaces (FSS). Within the periodicity representation imposed by the 
Floquet theorem it is possible to represent the dominant propagating Flo-
quet reflected plane wave in terms of an impedance in a transmission line. 
This approximation is valid for describing the interaction of this dominant 
Floquet wave (FW) with the stratification behind and to account for the 
storage of reactive energy associated to evanescent FW. Although a more ac-
curate description of periodic structure is framed in the MoM solution 
scheme described in Sec. 3.1, the impedance representation could be useful 
for the Pole-Zero Matching technique described in Sec. 3.5 
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3. ANALYSIS METHODS 

3.1 MOM Solution Framework - spectral (POLITO)  
The spectral formulation represents the natural way to analyse the scatter-
ing problem of an arbitrary planar array of patches or aperture [1]-[2]. This 
formulation is based on the introduction of a vector transmission line repre-
sentation, where voltages and currents are the two-dimensional Fourier 
transforms of the transversal electric and magnetic fields, respectively. 

 

 
 

Two solution approaches are possible: the patch approach, where the un-
known is the current induced on the metallization, and the aperture ap-
proach, where the aperture electric field is chosen as unknown. The array 
generalized Scattering Matrix (GSM) is subsequently derived in the Floquet 
mode basis. 

Power dissipation in a FSS can take place in the dielectric support structure 
and in the metal patches. While the former process can be easily modelled by 
introducing complex permittivities, the latter requires a reformulation due 
to the modification of the boundary conditions. 

To solve the problem, a vector transmission line formalism [3] can be intro-
duced, where the voltage and current are the 2D Fourier Transforms of the 
transverse electric and magnetic field, respectively.  Hence, the impedances 
and scattering matrix elements are dyadic. 

The general FSS scattering problem is solved by a network approach. The 
metal elements, assumed to be of zero thickness, are removed by means of 
the Equivalence theorem and substituted with an unknown distribution of 
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electric current, equal to the magnetic field jump. Applying the transmission 
line technique, the structure is represented by a network, where the electric 
current induced on the patches is accounted for by the shunt current genera-
tor. 

The dielectric stratifications are represented by means of their scattering 
matrices, whereas the voltage generator is the Fourier transform of the inci-
dent electric field. 

The functional equation is solved by the method of moments applied directly 
in the spectral domain. A suitable set of basis functions is introduced to rep-
resent the strength of the current generator i(σσσσ) and to project the func-
tional equation (Method of Galerkin). In the case of a periodic arrangement 
of patches with a plane wave incidence the spectrum becomes discrete (Flo-
quet modes) and the solution is obtained in a scattering matrix form. 

 

 
 

References 
[1] R. Orta, R. Tascone and R. Zich, ''A unified formulation for the analysis 

of general frequency selective surfaces'', Electromagnetics, vol. 5, no. 4, 
1985, pp. 307-329. 

[2] R. Orta, R. Tascone and D. Trinchero, ''A spectral approach for the mod-
elling of planar periodic structures'', in  Recent Res. Devel. Microwave 
Theory & Tech.}, edited by S. G. Pandalai, Transworld Research Net-
work Press, Trivandrum, India, vol. 1, 1999, pp. 133-157. 

[3] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Pren-
tice Hall, 1973. 

3.2 MOM Solution Framework – spatial (Siena) 
The rigorous analysis of printed circuit elements, such as microstrip inter-
connects terminated by complex loads, microstrip discontinuities, patch an-
tennas and printed dipoles, requires the use of the vector and scalar Green's 
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functions for a substrate layer backed by a ground plane. It is well-known 
that the Green's functions for microstrip geometries are improper integrals 
[I], also called Sommerfeld integrals, whose integrands are oscillatory and 
slowly decaying functions; hence, their calculation is very time-consuming if 
not impractical for many configurations of interest. Using the closed-form 
expressions for the spatial domain Green's functions in a variational tech-
nique, e.g., the method of moments (MoM), can result in a substantial sav-
ings of computation time when analysing planar microstrip structures. Once 
the improper infinite range in over finite supports associated with the basis 
and testing functions. In view of this, it would be instructive to demonstrate 
the difficulties that one may face in the application of the conventional mo-
ment method approach to microstrip geometries, before starting the deriva-
tion of the closed-form Green's functions for the vector and scalar potentials.  
 
 
 

 
 
 
 
 

Figure 1  General microstrip structure 

 
It is well known that MOM can be applied either in the spatial domain [4] or 
in the spectral domain [5], the latter being more suitable for planar geome-
tries unless the spatial domain Green's functions can be approximated in 
closed-forms [6], [7]. Both approaches will be briefly examined here with a 
view to comparing their computational efficiency. 

An important issue that merits examination in the MOM formulation is the 
convergence problem of the integrals representing the MOM matrix. Con-
sider, for the sake of illustration, a general microstrip structure shown in 
Fig. 1 where it is assumed that the substrate layer extends to infinity in the 
transverse directions. Let the thickness and the permittivity of the substrate 
be denoted by d and er, respectively. Although the Green's functions dis-
cussed herein pertain to the geometry shown in Fig. 1, the comments ap-
pearing in this section apply to more general geometries as well. The tan-
gential electric fields on the plane of the patch (z = 0) can be written in terms 
of the surface current density J and the Green's functions for the vector and 
scalar potentials A

xxG , and qG , respectively; 

rε

h

x 
y

z 
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 (1a) 

 
 (1b) 

 

where * implies convolution. 

To solve for the surface current density on the patch by the MoM, the first 
step is to expand the surface current densities in terms of a linear combina-
tion of the basis functions as follows: 

 
  (2a) 

 

 (2b) 
 

 

where An and Bn are the unknown coefficients of the basis functions, Jxn and 
Jyn. Next we substitute (2) into (1) and test the resulting equations using 
some testing functions Txm and Tym and a suitable definition of inner prod-
uct, e.g., 

 

 (3) 

 

Since the testing functions and the tangential electric fields have non zero 
values over complementary regions, the left hand sides of (la) and (lb) be-
come zero after the testing, and the following algebraic equations are ob-
tained for the coefficients An and Bn: 

1A
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 (4a) 
 
 
 
 

 (4b) 
 

 
The first inner product term is written below as an example 

 

 (5) 

 

where D(T) and D(B) represent the domain of the testing and basis func-
tions, respectively, and  
 

 (6) 

 

In general, each inner product term in the spatial domain, e.g., the one given 
in (5), is a five-dimensional integral: one of these is associated with the 
Green's function itself which is an improper integral (Sommerfeld integral) 
over an infinite domain and is given in (6); two of these are convolution inte-
grals; and, the remaining two are inner products. Since the numerical inte-
gration of the five-dimensional integrals is computationally intensive, the 
convolution integral over the Green's function and the basis functions is of-
ten transferred over to the basis and testing functions, enabling one to carry 
out this integral analytically. With this step, the order of integration can be 
reduced to three. In spite of this, the evaluation of the inner product is still 
very time-consuming because of the slow convergence behaviour of the inte-
grands of the Green's function. Recently an approach to circumventing this 
problem has been developed on the basis of complex equivalent images 
which leads to closed form expressions for the spatial domain Green's func-
tions corresponding to the vector and scalar potentials associated with a 
horizontal electric dipole (HED) located over a thick substrate [1],[2],[3]. 
This approach allows treating the spatial domain MoM in the same fashion 
as that for free space environment. On the other hand the use of the small 
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domain basis function imply a very flexible and general scheme, which takes 
advantage by a fast calculation of the mutual impedances. The spectral do-
main approach analysed in Sec 3.1 is indeed suitable for entire domain base 
functions, which exhibit a reduced spectral bandwidth. It is indeed worth 
noting that the MoM impedance of the electric field integral equation as-
sumes the expression, for instance: 
 
 

 

where ( ),EJ
xx x yG k k is the spectral domain Green’s function for the electric x-

oriented dipole source and x-directed observed electric field. 
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3.3 Multimode Analysis (Y,S) – (TNO) 
In the last few decades, several approaches have been proposed for the 
analysis of complex multilayer FSS structures, mostly evolutions of the 
Method of Moments (MoM) technique. An in depth discussion about the 
various methods can be found in [1]-[3].  In most of these cases, the response 
of the multilayer FSS to plane wave incidence, in terms of reflection and 
transmission coefficients, is obtained by solving a single integral equation 
and, in a second step, characterizing the fields reflected and transmitted at 
the two most outer transitions. This approach provides global information 
about the electromagnetic response of the complete layered structure, but 
not about the field distribution at each internal discontinuity.  

( ) ( ) ( ), , ,EJ
xm x y xx x y xn x y x yT k k G k k J k k dk dk

∞ ∞

−∞ −∞
− −∫ ∫
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On the contrary, the Generalized Scattering Matrix (GSM) and the Multi-
mode Equivalent Network (MEN) approaches characterize each periodic sur-
face/dielectric slab in the structure, in terms of a multimode representation 
based on the scattering parameters, (GSM), or impedance/admittance pa-
rameters, (MEN). These methods treat each layer as an open waveguide, 
where the fields are represented as a superposition of Floquet’s Waves 
(modes). The multilayer FSS is then seen as a cascade of scattering or im-
pedance matrices, retaining the information about the field distribution at 
every section of the structure. For both the GSM and the MEN approaches, a 
significant improvement in the numerical stability has been achieved by fol-
lowing the concept, originally introduced in [4], of separating the modes in 
accessible and localized ones. The accessible modes propagate or stay below 
cut-off, but with a low enough attenuation to be still significant when they 
reach the adjacent transition. The latter do not leave the transition area and 
are associated to the reactive energy stored in the vicinity of the discontinui-
ties. Accordingly the number of input and output ports in the equivalent 
network, characterizing the transition between two discontinuity free re-
gions, is equal to the number of accessible modes on the two sides of the dis-
continuity.  

A first fundamental advantage of these approaches is given by their intrinsic 
modularity. In fact, complex multilayer structures can be analysed as a cas-
cade of different blocks each one characterized by its own equivalent net-
work independent from the others. Therefore, only those parts of the com-
plete structure that have actually been modified need to be characterised 
again, keeping unchanged the representation of the rest of the structure. 
Moreover, if the tuning is mainly achieved by acting on the longitudinal di-
mensions of the waveguide sections, there is no need to re-compute the 
modes and the coupling integrals, which have been evaluated and properly 
stored in previous iterations. Clever exploitation of the above features allows 
for substantial speed-up in optimisation procedures when many iterations 
are required to meet the design specifications.   

Even though the GSM and the MEN approach share many features a key 
difference arises. With the GSM approach the scattering parameters are cal-
culated by solving a single Integral Equation (IE) pertinent to each transi-
tion, [1], [5]-[9]. This is different in the MEN approach, where the problem 
formulation leads to a set of IE's, whose number is equal to that of the se-
lected accessible modes. These IE's will be referred to as reduced Kernel IE's. 
In fact each one of them has a Kernel, which is associated to the non-
accessible portion of the Green's Function (GF). In other words, the contribu-
tion corresponding to the selected accessible modes is subtracted from the 
Green’s function expression.  

The MEN method, that was originally proposed for the analysis of planar 
two dimensional gratings [10]-[12] has been extended to the study of 
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waveguide transitions [13]-[15], therefore allowing the analysis of thick per-
forated metal screens and FSS directly integrated with the array aperture 
(open-ended waveguide radiators), and recently to three dimensional FSS's 
of slots or patches [16].  

One of the most significant advantages of the MEN representation with re-
spect to commercial codes is its versatility, in particular, its capability to ex-
tract the dominant EM behaviours and to make use of this information in 
order to reduce the total computational time. The number of full wave simu-
lations that are necessary to characterize the complete FSS structure, de-
pends on the speed of the variation of the observed parameters as a function 
of the frequency. It can be observed that the input impedance of the overall 
multilayer FSS structure is varying fast as a function of the frequency. In 
fact, all the fast frequency dependencies are associated to the transmission-
line-type interactions between the two FSS's that in the MEN are accounted 
for at equivalent network level rather than at full wave analysis level. This 
property is systematic and holds also for aperture based FSS's. On the con-
trary, looking only at the impedance/admittance matrixes of the slot/patch 
transition, it can be observed that the variation of the impedance matrix 
elements as a function of the frequency is much smoother and therefore their 
interpolation is very simple. This important property can be observed also by 
using a GSM method to calculate the scattering parameters of each FSS and 
deriving then the generalized impedance or admittance matrix through a 
standard parameter conversion method. However, a first key feature of the 
MEN method with respect to GSM approaches is that it intrinsically pro-
vides more physical insight to the phenomena at hand. This is due to the fact 
that admittance or impedance matrix elements are essentially weak versions 
of the GF's, while the scattering parameters are artificial compacting tools. 
If one wishes to simplify the numerical evaluation of the GF's of periodic 
structures excited by non periodic sources this property is extremely useful. 
Moreover, it is clear that the slow variation of the MEN impedance matrix 
elements is associated to the use of the non-accessible GF in the Kernel of 
the IE's. A less singular Kernel indeed provides less variation with the fre-
quency.  
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3.4 Homogenisation of boundary conditions  
 (including asymptotic boundary conditions) (Lund) 
When the applied wavelength is much larger than the geometric variations 
of the structure, only the first few Floquet modes contribute to the reflected 
field. This causes the reflection characteristics of the surface to be similar to 
that of a fictitious, homogeneous medium. By manipulating the geometry of 
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the microstructure, it is possible to control the properties of this fictitious 
medium. 

General homogenisation: The typical geometry is given by a periodic (or 
statistically homogeneous) surface, where the period is small compared to 
the wavelength. There are then two characteristic scales in the problem: one 
is the wavelength, and the other is the period. Denoting these scales by x 
and y, respectively, we are typically looking for solutions on the form 

( , ) = ( , /δ)E x y E x x , periodic in the second argument, where δ is the ratio be-
tween the microscopic and the macroscopic scale, i.e., a small dimensionless 
parameter. The classical way of analysing the problem is to make an asymp-
totic series expansion [1], 

 2( , /δ) = ( , /δ)+δ ( , /δ)+δ ( , /δ)+ ...0 1 2E x x E x x E x x E x x  

As the scale δ → 0 , we expect → 0E E . Inserting this ansatz into Maxwell's 
equations and collecting terms of different powers in δ, the result is that the 
lowest order field 0E should satisfy the equations  

(1) ∇ ⇔ ∇y y× = = - u0 0 0E E E0 , and [ ] 0∇ ⋅ ⋅y ( ) =0y Eεεεε  

The physical interpretation of these equations is that the mean value part 
〈 〉0E  corresponds to the macroscopic field, i.e., the field that is observable at 
scales comparable to the wavelength, and the gradient part ∇u  corresponds 
to the microscopic fluctuations. The effective permittivity is defined by the 
relation 

 〈 〉 = ⋅ 〈 〉eff 0D Eεεεε , or y〈 ⋅ 〈 〉−∇ 〉 = ⋅ 〈 〉effu0 0y E Eε εε εε εε ε( ) ( )  

This shows that the effective permittivity can be calculated by choosing the 
mean value 〈 〉0E  and solving the local problem (1). Although the expansion 
in an asymptotic series is only formal, it can be rigorously justified by the 
concept of two-scale convergence [2]. The equations can also be generalised 
to apply to statistically homogeneous, random media [3].  

An important alternative to solving the local problem is the use of bounds 
[4]. These are analytical expressions, which can be used to give estimates of 
the homogenised permittivity based on only limited geometrical information 
of the microstructure, such as volume fractions and other statistical parame-
ters. These bounds often coincide with classical mixture formulas, such as 
the Maxwell-Garnett formula.  
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Figure 1  Typical geometry for surface homogenisation. 

 

Application to surfaces: Let the medium be periodic in the dimensions 
parallel to the surface, for instance as in Figure 1. The homogenisation pro-
cedure can be applied in each cross section, i.e., for a given height coordinate 
x3. This transforms the corrugated surface to a stratified medium, in which 
the wave propagation is described by a set of ordinary differential equations 
in the x3 coordinate. By solving these differential equations, it is possible to 
calculate the surface impedance or reflection coefficient of the surface. 

A common case is when the medium is periodic in only one direction, typi-
cally realised by grooves in a metallic surface. These are the soft and hard 
surfaces [5], which can also be analysed by considering the fields inside the 
grooves as modes in a parallel plate waveguide. The only propagating mode 
is then the one with electric field orthogonal to the grooves, and choosing 
grooves with depth corresponding to a quarter of a wavelength means the 
corresponding tangential magnetic field at the top of the groove is zero. See 
the section on Soft and Hard Surfaces in this catalogue for applications. 

It is important to remember that asymptotic boundary conditions are de-
fined by a limit process, where a microscopic scale is becoming infinitesi-
mally small compared to the wavelength. Another common limit process is 
when the conductivity of a metal is becoming very large. An important result 
is that these two limit processes do not commute, i.e., we end up with differ-
ent results depending on if we homogenise a PEC surface, or if we homoge-
nise a finite conductivity surface and then send the conductivity to infinity.  

Another problem with homogenisation is that it is difficult to estimate the 
range of validity for the results. The old rule of thumb is that the micro-
scopic scale should be at least ten times smaller than the wavelength. How-
ever, recent results show that homogenised properties give good results for 
surprisingly large microscopic scales. For reflection from surfaces this is par-
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ticularly true if the observation point is sufficiently far from the surface, 
since then the evanescent modes do not contribute to the total field. 
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3.5 Impedance representation of FSS (Siena) 
As anticipated in Sec. 2.6, an FSS printed in stratified region may be repre-
sented by an equivalent impedance in parallel to a z-transmission line (z be-
ing the abscise orthogonal to the surface). Several authors [1], [2], [3], [4], 
have treated this impedance via equivalent LC-circuit to characterize both 
the reflection and the dispersion properties. The lumped parameters are 
based on a quasi-static approximation and are capable to gracefully model 
the surface reflection properties in a certain limited frequency range. Al-
though in some cases the same LC-topologies catch the dominant dispersion 
physics, the same parameters, which are used for the reflection, are not able 
to describe the band gap properties. This motivates the demand for a net-
work derivation, which is rigorous, systematic, and uniformly valid in a 
broad range of frequency and wavenumber from the visible to the non-visible 
region. 

Let us consider a simple case of a periodic FSS constituted by thin dipoles 
printed on a grounded slab, and illuminated by a plane wave. The geometry 
is shown in Fig. 1. The dipoles are directed along the x axis of a reference 
system with z axis along the normal, and origin at the dielectric-air inter-
face. The periodicities of the FSS are dx and dy along x and y, respectively. 
Two different cases of incident plane wave are considered, which are 
sketched in Fig. 2a. In a first case, the plane wave direction of propagation 
belongs to the y-z plane, and forms an angle θ with the z axis. Only the TE 
(with respect to z) polarization provides the interaction with the FSS, being 
the E-field aligned with the electric dipoles. Since the dipoles are thin, the 
TM polarized wave essentially feels a bare (unprinted) grounded slab. When 
the plane wave is incident in the x-z plane, the TM field interacts with the 
dipoles, while the TE field feels the bare slab. The interesting cases are 
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therefore TE for H-plane incidence (Fig. 2a) and TM for E-plane incidence 
(right hand side of Fig. 2a).  

Consider first the TM case. The imposed plane wave establishes a dominant 
phasing kx=ksinθ (k=free space wavenumber) and ky=0, so that the field may 
be expanded in terms of Floquet waves (FW) with wavenumbers 
kxm=kx+2mπ/dx, kyn=2nπ/dx. Assume that all the FW’s are evanescent along z, 
except for the dominant one. At a certain distance from the surface, where 
the evanescent FW’s are completely attenuated, we can assume that the 
field in the x-y plane is uniform in amplitude. Thus, the total field may be 
rigorously described by a z-transmission line network [15] (Fig.2b), where 
the effect of the FSS accounted for by a shunt impedance ),( ωx

TM
FSS kZ  placed at 

z=0. According to the description of unprinted dielectric stratified media, the 
rest of the network is described by pieces of TM transmission line with 
propagation constants associated to the dominant (propagating) FW: 

22
xz kkk −=  for the free-space semi- infinite line and 22

11 xz kkk −= ε  for the short-
circuited dielectric line. The TM characteristic impedances are, 00 ωεz

TM kZ =  
and 111 ωεz

TM kZ = .  

An analogous network can be given for the TE case, where the FW expan-
sion leads to wavenumbers kym=ky+2nπ/dy, kyn=2nπ/dx. The corresponding 
network (Fig. 2b) has propagation constants 22

yz kkk −= , and 22
1 yrz kkk −= ε , 

characteristic impedances , and shunt im-
pedance ),( ωy

TE
FSS kZ .  

We denote by “FSS equivalent impedance” the uniform impedance ),( ωx
TM
FSS kZ  

placed at z=0 which recovers the exact field far enough from z=0. (we will of-
ten refer to ),( ωx

TM
FSS kZ  for simplicity, understood that analogous considera-

tions apply to ),( ωy
TE
FSS kZ ). More rigorously, the FSS impedance can be defined 

as the ratio between the E-field and the discontinuity of the H-field (∆H) as-
sociated to the dominant Floquet mode.   

It is worth emphasizing the following points. 

i) The FSS impedance is not associated to the ratio between total  
E and ∆H contribution at z=0, since these quantities are not 
uniform along the x-y plane, but to contributions proper of the 
dominant FW. These latter may be considered as associated to 
an average field concept [13].  

ii) The network is not valid for any z-level. The total field has in-
deed non uniform amplitude in the x-y plane at z-levels where 
the higher order FW’s are not completely vanished. 

iii) The homogenisation process we have defined for the FSS im-
pedance doesn’t require high number of printed dipoles in terms 
of a wavelength; it has been only assumed to deal with only one 
propagating Floquet mode for any incidence angle. 

z
TE kZ 00 ωµ= 101 z

TE kZ ωµ=
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iv) For the concerned dipole FSS, and for both the polarization 
cases, the dominant propagating FW has the same polarization 
(TE or TM) of the incident plane wave. This property is not sat-
isfied by the higher order, z-evanescent FW’s, which are of both 
TE and TM types for each individual case shown Fig 2.  

v) If the direction of incidence does not belong to the principal 
planes, the dominant propagating FW is depolarized.  

 
Concerning with the points ii),  iii), and iv), the present method can be gen-
eralized by using a multiport network scheme [16] 

                    Figure 1                                                                                    Figure 2 

    Figure 1   Geometry for a dipole-FSS printed on a grounded dielectric slab.  

Figure 2  (a) Incident plane wave on the printed surfaces. Only the  
                polarisations which interact with the FSS are shown.  
                (b) Transmission line networks for TE and TM polarizations. 

For the validity of the network representation in Fig. 2, it is important to in-
dividuate the region of the dispersion diagram relevant t a single propagat-
ing FW. Indicating by c the free-space speed of light, and limiting the obser-
vation to positive value of kx (negative values may be reconstructed by sym-
metry), the conditions for the TM case are (i) cdk xx //2 ωπ −<− , (ii) ckx /ω<  (real 
angle of incidence). These relations are associated to the region shadowed at 
the right hand side of Fig. 3. For the TE case analogous conditions leads to 
the region shown at the left hand side of Fig. 3. 
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It is also worth noting that the properties of pole and zero of the impedance 
(also known as Foster properties) lead to the possibility to represent the im-
pedance in a fast and efficient way by a rational function.   
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Figure 3  Region of validity of the single-mode transmission line net-

work in the dispersion diagram kx-ω (TM) and ky-ω (TE) . 

Assuming absence of losses, the equivalent FSS impedance is purely reactive 
for every kx. We will postulate that ),( ωx

TM
FSS kZ  for every real kx possesses the 

same properties of a passive “driving point” LC-function of frequency. These 
properties are [5]:  

i)  The driving point LC functions are rational function of frequency. 

ii) Poles and zeros lie on the real ω axis, are simple and alternate.   

iii) A pole or a zero must be at ω=0.  

iv) The poles are symmetrically displaced w.r.t. the origin. 

These properties imply that the frequency functions can univocally be de-
termined by the positions of poles and zeros along the real ω axis. Since for 
the quasi-static limit the dipole-FSS behaves like a shunt capacitance in the 
transmission line (see Fig.2b), the FSS impedance exhibits a pole in the ori-
gin. The properties i)-iv) serves to provide analytical approximation of FSS 
impedance (see Sec.5.2.1.1) 
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3.6 G1DMULT models for analysing one-dimensional (1D) 
multilayer (MULT) structures (Chalmers) 
Planar, circular cylindrical and spherical multilayer structures have one 
property in common: the structure is homogeneous in two dimensions, and 
varies in the third dimension. For example, the cylindrical structure varies 
in radial direction and is homogeneous in axial and φ directions. Thus, we 
can call planar, cylindrical and spherical structures one-dimensional struc-
tures since they vary only in one dimension [1].   

The problem of determining the E- and H-fields radiated by a source embed-
ded in a one-dimensional structure can be simplified if we perform the two-
dimensional (2D) Fourier transformation in the coordinates for which the 
structure is homogeneous.  In the cylindrical case we perform the Fourier 
transformation in axial direction and the Fourier series in φ direction, and in 
the spherical case we perform the vector-Legendre transformation. For each 
spectral component of the source the excited electromagnetic field in two di-
rections for which the structure is homogeneous has the same harmonic 
variation as the source. As a result, only the electromagnetic field variation 
in the normal direction is unknown. In other words, our original three-
dimensional problem is transformed into a spectrum of one-dimensional 
problems, which is much easier to solve.  

One representative of numerical algorithms that can determine the field dis-
tribution inside a multilayer structure is the G1DMULT algorithm [2] (the 
abbreviation G1DMULT stands for Green’s functions of 1D multilayer struc-
tures). By means of a two-dimensional Fourier transformation, the three-
dimensional excitation currents are transformed into harmonic current 
sheets (current tubes in the cylindrical case and current shells in the spheri-
cal case). The harmonic one-dimensional problem is solved by making use of 
equivalent problems, one for each layer. The unknowns are the tangential E- 
and H- fields at the layer boundaries. Since the variation of the E- and H-
fields in the direction tangential to the boundaries is harmonic with known 
periodicity, we only need to determine the complex field amplitudes at the 
interfaces, i.e., we have four unknowns per boundary.  The algorithm con-
nects all equivalent subproblems into a system of 4⋅(Nlayer-1) linear equations 
with the same number of unknowns (Nlayer denotes the number of layers). 
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Once the amplitudes of the tangential fields have been determined, it is easy 
to determine the field amplitudes anywhere in the multilayer structure by 
applying the homogeneous region equivalent principle for the layer inside 
which we want to determine the field value.  

The advantage of the G1DMULT analysis method is that it is easy to im-
plement homogenized boundary conditions for modeling various types of pe-
riodic structures, e.g. by assuming that the period is zero [3]. For example, 
corrugated surfaces, strip-loaded dielectric slabs and mushroom EBG struc-
tures were succesfully analyzed using this approach (see e.g. [2]).  
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3.7 Conformal Models (TNO) 
It must be underlined that only very few works have been presented in open 
literature regarding the modelling of curved conformal Frequency Selective 
Surfaces [1], [3]. On the contrary, an abundant literature is available on con-
formal antennas. Since these models could in principle be adopted also for 
the analysis of FSS, in order to offer a more complete picture, the overview 
presented hereafter will include all these different approaches. The different 
methods have been classified and subdivided into the following two catego-
ries: analytical and numerical techniques. 

3.7.1 Analytical Techniques 

The first theoretical works on rectangular and wraparound patch antennas 
on cylindrical surfaces were published in the early eighties [4]-[7]. These 
works are based on the so-called cavity method. The validity of such method 
is limited to thin cavities, where the substrate thickness is much smaller 
than the wavelength and the radius of curvature. The first rigorous full-
wave approach was published only at the end of the eighties [8]. In the last 
twenty years, several other contributions have been published about the 
analysis of conformal microstrip antennas using full-wave methods [9]-[14]. 
Most of these analytical approaches are based on the derivation of the 
Green’s function either in spatial or in spectral domain.  
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An attempt of generalisation of the Green’s function approach is the algo-
rithm G1DMULT, for calculating the Green’s function in the spectral do-
main for planar, circular cylindrical and spherical multilayer structures [15]-
[19]. All these three structures, in fact, have one property in common: they 
are homogeneous in two dimensions and vary in the third dimension. There-
fore, the original three-dimensional problem is simplified into a one-
dimensional problem and the corresponding Green’s functions are deter-
mined performing a 2D Fourier transformation in the co-ordinates for which 
the structure is homogeneous.  

Another method based on Green’s functions is the so-called Mixed Potential 
Integral Equation (MPIE) approach [20]- [22]. The MPIE approach is simpler 
to implement and more efficient than the conventional electric field integral 
equation method because the Green’s functions have the property to be less 
singular. In particular, this technique in evaluating the cylindrical Green’s 
function involves subtracting off the appropriate flat-surface Green’s func-
tion terms and deforming the path of integration into the complex plane to 
avoid the poles. This approach led to the development of Boulder Microwave 
Technologies Clementine® software. 

A more general approach for the analysis of radiation and mutual coupling 
of antennas on smooth perfectly conducting arbitrary convex surfaces is the 
Uniform geometrical Theory of Diffraction (UTD) solution proposed in [23]-
[29]. This technique allows computing radiation and surface fields for elec-
tric and magnetic currents in or on the coating on perfectly conducting arbi-
trarily shaped convex surfaces. This was achieved by developing asymptotic 
high frequency UTD solutions for a circular cylinder and a sphere from 
known eigenfunction series and then, by generalising those solutions to an 
arbitrarily shaped convex surface, via the local properties of electromagnetic 
wave propagation at high frequencies.   

Another analytical method to analyse multilayer and multiconductor struc-
tures on quasi-cylindrical surfaces was presented in [30]. The dyadic Green’s 
function for the unperturbed problem, derived in conventional circular-
cylindrical coordinates, is the starting point for the solution of a perturbed 
problem corresponding to a quasi-cylindrical convex or concave structure. 
Deviations from the constant boundary are included into the analysis as a 
perturbation term for the dyadic Green’s function of the circular cylindrical 
structure, which is found by using the vector Green’s theorem in two dimen-
sions. 

Two specific works on the analysis and design of conformal patch based FSS 
can be found in [1] and [2]. These two works are conference papers and 
therefore limited information is available. In [1], a conformal dichroic subre-
flector structure has been first designed as a flat surface adopting classical 
dichroic techniques. In a second step, every element has been virtually 
transposed in the corresponding point of the hyperboloidal-paraboloidal sub-
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reflector surface, deforming it in a suitable way in order to fit the exact tan-
gential angle of the surface in the considered point. In [2], a numerical solu-
tion for coupling into and scattering from uniform array of patches or aper-
tures conformed to a circular cylinder is presented. The work outlines some 
scattering features of cylindrical structures as frequency selective surfaces. 
The numerical technique of analysis is the conjugate gradient (CG) iterative 
scheme in conjunction with the fast Fourier transform (FFT). 

At this point, it is worthwhile spending few words also for structures based 
on thick/thin slots on metallic surfaces. 

The boundary value problem of radiation from a slot (with a sinusoidal dis-
tribution) on a metallic circular cylinder was solved exactly several decades 
ago [31]-[33]. The solution is a harmonic series of functions appropriate for 
the cylinder: Bessel and Hankel functions. Since then, several different mo-
dal approaches have been developed by different authors using a series for 
the azimuth poles in the Green’s function, and integrals for the continuous 
spectrum, [34]-[40]. 

The similar problem of an array of infinitely long axial thin slots (slits) de-
veloped all around the cylinder have also been widely studied in [41]-[47], 
adopting the unit cell approach and consequently a Floquet’s mode expan-
sion, thanks to the periodicity and full symmetry of the structure. The unit 
cell approach was extended in [48]-[52], considering an infinitely long cylin-
der covered with a regular array of axial slots. 

Asymptotic approaches, based on Ray Analysis, have been used for slots on 
cones [53], convex cylinders [54]-[57] and concave cylinders in [58],[59]. 

In [60] the authors present an integral equation approach based on the 
equivalence principle for the analysis of electromagnetic scattering by a cy-
lindrically conformal waveguide-fed slot array. The integral equations are 
solved with the Method of Moments (MoM) with global sinusoidal basis func-
tions. A number of numerical problems like derivation of the Green’s func-
tions, evaluation of singular integrals and slowly converging series are also 
addressed in this work.  

The other work which presents the modelling of conformal FSS (in this case 
circular cylindrical thick perforated metal screens) is the one in [3]. Also this 
paper is a conference contribution but the underlying methodology is widely 
described in [61]. The work presents an efficient integral equation technique 
based on the Multimode Equivalent Network (MEN) formulation and the 
unit cell approach. It consents the analysis of structures like open-ended 
waveguide arrays and multilayer FSS on circular cylindrical surfaces as a 
cascade of multimode admittance matrixes. Thanks to the generality and 
modularity of this method, multilayer structures consisting of dielectric lay-
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ers and frequency selective screens can also be efficiently analysed as stand-
ing alone as well as directly integrated in the array structure. 

As was the case of arrays of elements on a cylinder, arrays of elements on a 
cone can be attacked either by harmonic series or by asymptotic methods, 
the latter for portions of the cone where the radius is large in terms of wave-
lengths [62]-[66]. 

An early work applying the harmonic (modal) series to a slot on a sphere 
was given in [62]. Much of the mutual coupling work for cones is, with minor 
changes, applicable to coupling of elements on a sphere. Both modal series 
and asymptotic methods have been used [67]-[70]. 

For more arbitrary surfaces, no analytic solutions are available and since 
the assumed dimensions compared to the wavelength are large, numerical 
techniques based on matrix methods may become impractical. The remain-
ing choice is to use asymptotic techniques. Since the near field of the radiat-
ing elements are not known beforehand the asymptotic field computation is 
combined with the moment method, leading to a hybrid approach. In [71]-
[73], such a method is used to analyse apertures on singly curved convex sur-
faces, but in general, the method can also be used for doubly curved surfaces.  

3.7.2 Numerical Techniques 

Over the past fifteen years we have witnessed an increasing reliance on 
computational methods for the characterisation of electromagnetic problems. 
Although traditional integral-equation methods continue to be used for 
many applications, one can safely state that in recent years the greatest 
progress in computational electromagnetic has been in the development and 
application of partial differential equation (PDE) methods such as the Finite-
Difference Time-Domain (FDTD) and Finite-Element Method (FEM), includ-
ing hybridisation of these with integral equation high frequency techniques. 
The major reasons for the increasing reliance on DE methods stem from 
their inherent geometrical adaptability and their capability to model hetero-
geneous (isotropic or anisotropic) structures. At the beginning of the nineties 
many researchers extended their numerical methods to conformal structures 
trying to overcome the limitations, in terms of structural complexity, of the 
traditional rigorous techniques involving integral equations.  

The Finite-Difference Time-Domain (FDTD) method, in its original formula-
tion, employs rectangular grid models to discretise space. However, when an 
irregularly shaped structure should be analysed, rectangular grid models 
must use fine division requiring correspondingly large amounts of time and 
memory. To overcome this drawback, several techniques have been elabo-
rated and then used by some authors to model conformal radiating elements: 
locally distorted grid models [74], [75]; globally distorted grid models [76], 
[77] and FDTD sandwich algorithm (SW-FDTD) [78].  
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The other well-known approach is the one based on the Finite-Element for-
mulation. The goal of any Finite-Element formulation is to obtain the solu-
tion of the electric field vector wave equation by means of the weighted re-
siduals method by subdividing the volume enclosing the structure to be ana-
lysed as a collection of small elements. Within each volume element, the 
field can then be expanded in terms of proper set of edge-based shape or ba-
sis functions.  

Over the past ten years, a lot of work has been done on the development of 
mesh truncation schemes. Exact boundary conditions provide an integral re-
lation between electric and magnetic fields and the resulting formulation is 
referred as Finite Element Boundary-Integral (FE-BI). To alleviate the 
higher computational demands of the FE-BI method, absorbing boundary 
conditions (ABC’s) and artificial absorbers (AA) can instead be used to ter-
minate the mesh. In the case of ABC’s, a local boundary condition in the 
form of a differential equation is applied on the surface to relate the electric 
and magnetic fields so that the surface appears as transparent as possible to 
the incident fields from the interior. The resulting method is referred to as 
the Finite-Element ABC (FE-ABC) method. In the Finite-Element Artificial-
Absorber (FE-AA) method instead, the mesh is terminated by using a mate-
rial absorber (typically not realisable in practice) to absorb the outgoing 
waves and suppress backward reflections. 

In [79] and [80], the FE-BI method has been applied to the analysis of cav-
ity-backed structures in an infinite, metallic cylinder, while in [81], the FE-
AA method, with distorted triangular prism mesh elements, was adopted for 
the analysis of different conformal patch antennas on spherical, conical and 
ogival platforms. 

Another numerical algorithm for the characterisation of microstrip confor-
mal antennas, based on the Method of Lines, has been proposed in [82] and 
[83]. Generally, microstrip structures on multilayer conformal surfaces can 
be seen as concatenation of open waveguide sections and waveguide junc-
tions. To describe the field propagation along the segments, generalised 
transmission line equations for the transverse electric and magnetic fields in 
inhomogeneous media have been developed. In each of the sections, radia-
tion is taken into account by introducing absorbing boundary conditions 
(ABC) into the difference operators. The main advantage of this approach is 
in that all the formulations for various structures in different co-ordinate 
systems have formally the same form, which allows compact computer pro-
grams for all cases.  

In [84], it has been proposed a new numerical approach based on the Method 
of Auxiliary Sources (MAS). According to MAS, the EM fields in each domain 
of the structure under investigation are represented by a finite linear combi-
nation of analytical solutions of the relevant field equations, corresponding 
to sources situated at some distance away from the boundaries of each do-
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main. The radiating “auxiliary sources” are chosen to be elementary dipoles 
located on the fictitious auxiliary surfaces, usually conformal to the actual 
surfaces of the structure. The displacement with respect to the boundaries 
eliminates the singularities of a typical MoM kernel, while there is no need 
for current integration at any stage of the solution. However this approach 
becomes inefficient in handling thin and open structures, and in order to 
overcame this limitation the standard version of MAS has been modified. 
According to the modified version (MMAS), instead of the EM fields gener-
ated by the fictitious current sources, the currents themselves and the 
charges on the auxiliary surfaces are used as unknowns. This method has 
been applied to the analysis of a cylindrical-rectangular microstrip patch 
[85]. 
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4. DESIGN METHODS 

4.1 Multi grid synthesis (POLITO) 
In many cases it is not possible to satisfy the design requirements with a 
single array, especially when very stringent conditions are imposed. In these 
cases, one has to resort to multiple array configurations, where several FSS 
are packed together, forming a device similar to a multiple cavity filter. 

The design of such structures is a difficult problem, often solved by optimisa-
tion techniques [1]. A filter-type approach, limited to the case of strip grat-
ings, has been presented in [2]. 

The case of a two-array FSS structure has been treated by viewing it as a 
Fabry-Perot interferometer and a suitable synthesis method has been pre-
sented [3]. 

Recently a synthesis technique developed for waveguide filter design [4]-[5] 
has been adapted to the design of multiple array FSS. This synthesis tech-
nique is based on a distributed parameter model where each array is charac-
terized by its scattering matrix. Typically, the metal patches are printed on 
dielectric layers that have a remarkable effect on the array response, since 
they reduce the resonance frequency. For these reasons it is important to 
compute directly the scattering matrix of each array in its real environment, 
i.e. including the support dielectric layers. In this way also the effects of 
strongly cut-off Floquet modes, present only in the array neighbourhood, is 
correctly accounted for. 

The FSS design is based on a synthesis procedure [4] that needs the scatter-
ing matrix representation of each discontinuity: the array of patches, the di-
electric support layers. 

The synthesis method is based on an extraction procedure that uses as input 
the transmission matrix parameter T21 = S11/S21 of the whole structure and 
yields the transmission coefficients S21 of the various discontinuities. In the 
synthesis procedure the parameter T21 is viewed as a polynomial of a com-
plex variable z, related to the frequency: 
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Two input parameters are generally enough to define the coefficients of the 
polynomial (typically Chebysheff): the transmission bandwidth and the rele-
vant return loss. For this application, the transmission bandwidth parame-
ter has been substituted with the magnitude of the transmission coefficient 
of the central discontinuity. In this way the procedure does not alter the ge-
ometry of the central array so that the position of the reflection band is 
maintained. In other words, the main role played by the other arrays is that 
of matching the central one, giving rise to the transmission band. As said 
above, the extraction procedure relies on the fact that the parameter T21 is a 
polynomial. 

However, in practice, this is not the case due essentially to the array fre-
quency dispersion, to the losses and to the multimodal interactions. Hence, 
the full wave analysis of the designed structure yields a T21 curve that is dif-
ferent from the desired one. These two functions can be considered as input 
and output signals in an abstract system that comprises the extraction pro-
cedure and the full-wave analysis of the designed structure. In [5] it is 
shown how to identify the parameters of this system, so that one can use (as 
a target to be synthesized) a pre-distorted version of the desired response 
curve. 
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4.2 Approximate models for scattering analysis (TICRA) 
A scattering problem consists of a known incident field and a scatterer with 
known geometry and electrical surface properties. The goal is to compute the 
total radiated field.  

If the surfaces of the scatterer are perfectly conducting the scattered field is 
generated by the induced surface currents on the scatterer. For non-perfectly 
conducting surfaces a set of equivalent electric and magnetic surface cur-
rents can be computed which exactly radiate the scattered field.  

The scattering analysis can thus be considered as a three step procedure 
where the first step is to calculate the induced or equivalent surface cur-
rents, the second step is to calculate the radiated field by these currents and 
the third step is to add the incident and the scattered field to obtain the total 
field. Of these steps the first is the most difficult and in general it will in-
volve techniques such as the method of moments that become very time-
consuming for large scatterers. Physical Optics is a simple method that gives 
an approximation to the surface currents valid for perfectly conducting scat-
terers, which are large in terms of wavelength. In this approximation it is 
assumed that the surface current in a specific point on a curved, but per-
fectly conducting scatterer is the same as the surface current on an infinite 
planar surface, which is tangent to the scattering surface in this point. 

If the surfaces of the scatterer are not perfectly conducting, but reflection 
and transmission coefficients are known, the Physical Optics method can be 
modified to give an approximation to the equivalent electric and magnetic 
surface currents. 

When the scattering surface is curved and of finite extent the Physical Op-
tics currents are an approximation to the exact equivalent currents. An im-
portant complication for the non-perfectly conducting surface is that the re-
flection and transmission coefficients usually depend on the angle of inci-
dence, which means that it is necessary to know the direction of propagation 
of the incident field. This restriction is not necessary for the Physical Optics 
approximation on a perfectly conducting surface. 

4.3 High frequency techniques for large surfaces            
 (Radomes and Reflectors). (TICRA) 
The Geometrical Theory of Diffraction (GTD) has proven to a very efficient 
analysis tool for reflector antenna systems that are electrically large. In the 
following it is illustrated how the conventional GTD approach can be modi-
fied to account for non-perfectly conducting reflector surfaces with known re-
flection and transmission properties. 
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One of the effects of the edge diffracted field is to create a continuous field 
across a reflection boundary (RB) and a shadow boundary (SB) of a scatter-
ing body, hence, where the reflected ray and the direct ray from the source 
are switched off. This situation is illustrated in Figure 1 for a perfect conduc-
tor. 

 

0.5GTDE = −  

1 
1rE =  

0.5GTDE = −  

0.5GTDE =  

0.5GTDE =  1tE =  

0rE =  

0tE =  

RB 

SB  
Figure 1 Diffraction on the edge of a perfect conductor 

A ray with unity amplitude is diffracted in the left edge of a perfectly con-
ducting plate. The reflected field, rE , has unity amplitude inside the reflec-
tion boundary and is zero outside. The transmitted field has unity amplitude 
outside the shadow boundary and is zero inside the shadow boundary. To 
compensate for these discontinuities the diffracted field, GT DE , must change 
from -0.5 to +0.5 across the boundaries. 

If the perfect conductor is replaced by a partly reflecting and partly trans-
mitting plate, the situation is as shown in Figure 2. 

 

1 rE R=

1tE =  

0rE =  

tE T=

RB 

SB  
Figure 2 Edge diffraction on a non-perfectly conducting plate 
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The reflection/transmission coefficients are R and T; hence the reflected field 
inside the reflection boundary and the transmitted field inside the shadow 
boundary are modified accordingly. 

The problem now consists in adapting the existing GTD algorithms, valid for 
perfect conductors, to surfaces that have specified reflection and transmis-
sion coefficients. Two separate cases, one for the reflection boundary and one 
for the shadow boundary, are considered. In Figure 3 the method for treating 
the reflection boundary is outlined. 

 

R 
0.5GTDE R= −

0.5GTDE R=

RB 

 
Figure 3  Diffraction at the RB edge of a non-perfectly conducting plate 

As the reflected field inside the reflection boundary has the amplitude R, the 
existing algorithms for calculating the diffracted field can be used with the 
assumption that the incident field is scaled from unity to R. 

As regards the shadow boundary the method is illustrated in Figure 4. The 
transmitted field, tE , has unity amplitude outside the shadow boundary and 
the amplitude T inside the shadow boundary, hence, an amplitude change of 
1-T. If the amplitude of the incident field is modified to 1-T, the diffraction 
coefficients valid for the perfect conductor case can be applied here. 
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0.5(1 )GTDE T= − −

1-T

0.5(1 )GTDE T= −

SB  
Figure 4    Diffraction at the SB edge of a non-perfectly conducting plate 

In order to solve the discontinuity problem at the reflection and shadow 
boundaries of the non-perfectly conducting plate in Figure 2 the two ap-
proaches are used as illustrated in Figures 3 and 4. The dash-dot line in 
these two figures indicates where the switch from one approach to the other 
is done. This switch will give rise to a discontinuity in the GTD field; how-
ever, at the boundary line the GTD field is low compared to the direct field 
so the discontinuity in the total field will be negligible. 
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5. SPECIFIC SURFACE MODELING 

5.1 Non-resonant surfaces 

5.1.1 Strip grids 

5.1.1.1 Simple analytical approach (TICRA) 

A planar sample of a general reflector material is illustrated in the figure be-
low. A material definition coordinate system, d d dx y z , is introduced with the 

dz -axis normal to the surface. The direction of an incident plane wave is 
given by the spherical coordinates ( ),i iq f , where iq  is measured from the 
positive dz -axis and if  from the positive dx -axis.  
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Surface
material
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Et  
Unit vectors for the definition of reflection and transmission coefficients. 

The incident plane wave can be decomposed as 

 ˆ ˆi i i
i iE E Eq fq f= +  
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and is partly reflected and partly transmitted through the surface where the 
unit vectors of incidence, ˆiq  and ˆ if  are the usual polar vectors shown in the 
figure. 

The reflected field is given by 

 ˆ ˆr r r
r rE E Eq fq f= +  

where 
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and the unit vectors of reflection, ˆrq  and ˆrf  are also shown in the figure and they 
are the negative mirror images of ˆiq  and ˆ if , respectively. 

Similarly, the transmitted field is given by 

 ˆ ˆt t t
t tE E Eq fq f= +  

where 
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and the unit vectors of transmission ˆtq  and ˆtf  are defined by 

 ˆ ˆ ˆ ˆ,t i t iq q f f= =    . 

A strip grid consists of parallel strips. Each strip has a width w and the spac-
ing of the strips is s (the distance from the centre of one strip to the centre of 
the next).  

The reflection and transmission coefficients are given by Nakamura and 
Ando (1988) for all angles of incidence. For a plane wave at normal inci-
dence, 0i iq f= = , polarised parallel to the strips the reflection coefficient is 
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and for polarisation orthogonal to the strips one gets 
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where l  is the wavelength.  

The formulas by Nakamura and Ando have been compared to other methods 
and it has been found that good accuracy is obtained for 0.3s l < . 

The strip grid is applied to a reflector surface as follows: The constant strip 
grid parameters, s and w, are defined in the planar aperture of the reflector. 
The real strip grid on the reflector surface is now generated by projecting the 
planar grid along the antenna axis from the aperture to the surface. Since 
the reflector surface is generally curved it means that the local grid spacing 
and width will vary across the reflector. This approach is very important for 
practical applications since it corresponds to the laser etching technique 
where the strips are cut out of a continuous thin metal layer deposited on 
the surface. 
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Vol. 36, No. 2, pp. 164-170. 

5.1.1.2 MoM based approach (POLITO) 

A periodical arrangement of metallic strips can be seen as a Capacitive Fre-
quency Selective Surfaces (FSS), having a two-dimensional arrangement of 
dipole patches with periodicities equals to the length and distance of the 
strips. For this reason, the general way a collection of strips can be analysed, 
as discussed in section 5.2.1.4. 

5.1.2 Wire grids 

5.1.2.1 Simple analytical approach (TICRA) 

The wire grid material consists of a planar sheet of parallel circular cylindri-
cal wires of spacing s. The diameter of the wires is 0d . It is assumed that 

0d s< < .  

The wire grid has many similarities with the strip grid and it can be shown 
that for polarisation parallel to the wires the reflection is equal to that of a 
strip grid where the strip width 02w d=  (Butler, 1982). For polarisation or-
thogonal to the wires the equivalent strip width is 02w d=  (Johnson and 
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Jasik, 1984, Ch.46). The angular dependence with iq  and if  is the same as 
for the strip grid. 

The wire grid is applied to a reflector surface in a similar way as for the strip 
grid. The constant wire grid parameters, s and 0d , are defined in the aper-
ture of the reflector antenna. The real wire grid on the reflector is now gen-
erated by projecting the planar grid along the antenna axis to the surface. 
Since the reflector surface is generally curved it means that the local wire 
spacing will vary across the reflector. In contrast to the strip grid where also 
the strip width varies across the reflector, the wire diameter 0d  is kept con-
stant for the wires on the surface. 
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McGraw-Hill Book company. 

5.1.3 Dielectric sheets (TICRA) 

The dielectric layer is a plate of dielectric material of thickness h and with a 
relative dielectric constant re . This type of material can be used to simulate 
the effects of a radome or it can be used in combination with other materials 
to model the sandwich support structure of a strip grid or the influence of 
thermal paint on a reflector. 

The reflection and transmission coefficients are given by Born and Wolf 
(1983) and one obtains: 
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where k is the free space wave number, 2 p l . re  may be complex to account 
for losses in the material. The dielectric material is isotropic and therefore 
the reflection and transmission properties are independent of if  and all off-
diagonal elements are zero.  
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5.2 Resonant surfaces 

5.2.1 Single layer Planar FSS, thin structures 

5.2.1.1 Lund 

Consider a frequency selective structure consisting of a periodic pattern of 
elements made up of thin strips (high aspect ratio). These can either be thin 
metallic strips, or thin slots in a metallic sheet. They can make element pat-
terns consisting of straight sections and bends, such as crossed dipoles, tri-
poles, hexagons (loop type element) etc. The scattering problem is solved by 
a spectral Galerkin method [1]. It is necessary to set up basis functions to 
describe the currents on the strips, and the choice of basis functions strongly 
influences the total effectiveness of the algorithm. 

In the papers [2-3], Poulsen develops an efficient set of basis functions for 
this kind of geometry. Starting by looking at the fundamental geometry of a 
V-dipole, i.e., two straight strips with an angle between them and joined in 
one of their respective endpoints, he develops a continuity condition for the 
current and defines a set of basis functions. The basis functions for the en-
tire FSS element are then assembled by combining V-dipole functions for 
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each part of the geometry. As an example, the crossed dipole element looks 
like a plus sign (+), which can be constructed as four V-dipoles with 90 de-
grees angle. Several other possibilities are indicated in the figure below. 

 

Figure 1 Geometry of the V-dipole, and some elements that can be con-
structed with it. 

The method provides accurate results with a minimum of basis functions, 
which provides opportunities for treating larger and more complicated struc-
tures. For instance, the multiple layer algorithms in the following section 
benefit from a fast and accurate solution of the single layer FSS case.  
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5.2.1.2 TNO 

The analysis of single layer FSSs is performed resorting to the Unit Cell ap-
proach [1] and an integral equation method [2] in combination with the Mul-
timode Equivalent Network (MEN) approach [3],[4]. The MEN approach (see 
also section 3.3), which shows all its potentialities when applied to multi-
layer FSS structures, is also very efficient and accurate when applied to 
simpler single layer configurations. In fact, even in these cases, the structure 
may still consist of an FSS sandwiched between two dielectric layers. Fur-
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thermore, the FSS is often used in combination with array antennas (feeds, 
phased arrays etc.) and therefore this approach offers the possibility to de-
sign the FSS not just as a standing alone element, but also as part of a sys-
tem including also the array antenna. In this case, the FSS and the array 
can be analysed both in a strongly interacting integrated configuration as 
well as in a less interacting more conventional accommodation.  

The FSS elements can be either arbitrarily shaped metallic patches or slots 
etched on a ground plane. The periodic structures under analysis are mod-
elled resorting to the Unit Cell approach. This implies the introduction of the 
concept of Phase-Shift Wall Waveguides (PSWW), which represents the free 
space regions under the periodic conditions dictated by the array. Floquet’s 
theorem provides a complete set of orthonormal modes to represent the field 
in these waveguides.  

The overall structure is modelled as a cascade of uniform PSWWs connected 
through the common transition surfaces. In the formulation, it is also intro-
duced the concept of “accessible” and “localised” modes. The accessible modes 
are the first modes (all the propagating modes plus first few non-propagating 
modes) excited by the discontinuity, which can “see” the successive transi-
tion, if any. The localised modes are all the infinite remaining modes con-
fined in the neighbourhood of the discontinuity. 

The FSS, which couples the modes in two opposite regions, is described by a 
multimode equivalent network. The MEN is derived imposing the proper 
boundary conditions of the electromagnetic field on the printed metallic ele-
ments or on the screen apertures. Depending on the kind of discontinuity, 
the transition networks are either in parallel or in series with respect to the 
Transmission Lines representing the uniform regions. This difference origi-
nates from the choice of the most suitable IE for representing the specific 
problem.  

In the patch formulation [5], the problem is formalised in terms of an Elec-
tric Field Integral Equation (EFIE) and the unknown quantities are the dif-
ferences between the magnetic fields in the half spaces defined by the FSS. 
Accordingly, these differences can be seen as currents flowing in a general-
ised load, located in parallel with respect to the transmission lines associ-
ated to the Floquet modes defined above and below the FSS discontinuity 
(shunt multimode admittance network).  

In the aperture formulation, instead, the problem is formalised in terms of a 
Magnetic Field Integral Equation (MFIE). In this case the unknowns are the 
magnetic currents (electric field) on the apertures. Since the voltages across 
the transition are discontinuous, the equivalent generalised load can be seen 
in series (series multimode impedance network). The integral equations are 
solved resorting to a classical MoM method where sub-domain or ad hoc full-
domains basis functions are used [6].  
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In Fig. 1a, it is shown an example of Frequency Selective Surface consisting 
of Jerusalem Cross dipoles embedded in a dielectric slab. Fig.1b shows a 
comparison between the reflection coefficients of the FSS for TE and TM po-
larised plane wave incidence, calculated with the MEN based theory and 
those available in open literature [7].  

 

  
 

Figure 1  (a) FSS geometry. (b) comparison between the reflection coef-
ficients of the FSS for TE and TM polarised plane wave inci-
dence calculated with the MEN based theory, and those 
available in open literature (B. Munk) [6]. 
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5.2.1.3 Siena 

Reflectors constituted by FSS are often very complicated to be analysed due 
to the large dimension in terms of the wavelength, which renders inapplica-
ble the conventional full-wave analysis. To this end, local approximation 
should be used, conceptually similar to the physical optics (PO) method for 
perfectly conducting surfaces. The equivalent currents to be distributed on 
the curved surfaces can be obtained from a multiparametric full-wave analy-
sis. The parameters involved in the process are: frequency, direction of inci-
dence and geometry. Calculating the reflection coefficient, amplitude and 
phase for each of these parameters in real time is inefficient, so that a pre-
calculation of reflection coefficient is probably the more efficient way, espe-
cially when dealing with optimisation algorithm. To this end, it is extremely 
convenient to catch the full-wave multiparametric features from few runs 
and obtaining from this analytical expression of the reflection coefficient. 
The equivalent network introduced in Sec.3.5 is well suited to this purpose, 
and provides with few full-wave steps to a full analytical large bandwidth 
characterization of the FSS impedance. 

 

 

 

 

 

 

 

 

Figure 1    Geometry of a FSS of printed dipoles on a grounded dielec 
           tric slab, illuminated by an incident plane wave (left), and 
           relevant equivalent dual transmission line network (right). 

To better illustrate the concept, let us consider the case of a FSS constituted 
by metallic patches printed on grounded slab, and illuminated by a plane 
wave with arbitrary direction of incidence ( )ϕθ ,  (Fig.1, left). The plane wave 
can be either transverse electric (TE) or transverse magnetic (TM) polarized. 
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In Sec 3.5 the particular case of incidence on the two principal cases has 
been considered which leads to two decoupled network z-transmission line 
networks for TE and TM cases. For oblique incidence with respect to the di-
pole direction a coupling between the two TE and TM is expected which 
yields the network illustrated in Fig.1, right. 

The periodicity is assumed to be small enough so that only the dominant 
Floquet mode of the scattered field is propagating along z. Through a peri-
odic Method of Moment analysis the response of the surface is characterized 
in terms of a frequency-dependent scattering matrix 

 
                    (1) 

 

where the subscripts h and e stand for transverse electric and magnetic, re-
spectively. The first and the second subscript are associated to the polariza-
tion of the reflected and of the incident wave, respectively. The terms of the 
reflection coefficient dyadic can be associated to the equivalent z-
transmission line network (Fig.1). The network is composed by two coupled 
transmission lines, associated to the TE and to the TM polarization, respec-
tively. In Fig.1, heY ,0 and d

heY ,0  are the characteristic admittances of the free-
space and dielectric transmission line sections, respectively; the lines are 
coupled by a two-port network characterized by admittance matrix.  

 

                
(2) 

 

where the second equality could be simply obtained by a diagonalization 
process which implies the rotation matrix R . 

When we have collected the functional dependence in terms of the kx and ky 
wavenumber, these wavenumber are related to the incidence angle by 
kx=ksinθ cosϕ, ky=ksinθ sinϕ . The two-port network is placed at the level of 
the FSS (z=0). This dyadic admittance simulates on a broad frequency band 
the response of the FSS surface by accounting for the local reactive energy 
associated to the evanescent Floquet modes. The off-diagonal elements of the 
dyadic take into account of the cross-polarization of z-transversalized fields 
due to the patches. We make here the assumption that the terms of the 
equivalent impedance dyadic are purely reactive due to the absence of losses 
in the electric conductor. 
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Following the theory illustrated in Sec 3.5, each term of the FSS admittance 
possesses the same properties of an LC driving-point impedance function of 
frequency. In network theory, it is well known that a LC-function can be 
uniquely determined by the positions of poles and zeros placed in the real 
ω axis and from the behaviour at 0=ω and infinity. On the basis of this as-
sumption, the expression of the terms of the FSS admittance dyadic is: 

 

                                       (3) 

 

We note that poles and zeros are independent on the polarization. The key 
aspect of the method is then concerned with the identification of the poles 

)( xip kω  and zeros )( xiz kω  as a function of frequency. The dispersion behav-
iour of poles and zeros of the admittance function can be retrieved from the 
full-wave data relevant to the scattering matrix on the frequency range un-
der investigation. 

As an example, the broad-band behaviour of the first two poles, 1pω  and 2pω  
and of the zero 1zω  of ),,(~ ωyx

FSS kkY  is shown in Fig. 2 as a function of the 
transverse wavenumbers (kx, ky). It is apparent that the frequency associ-
ated to poles and zeros has a smooth variation with the transverse 
wavenumber in the visible range, thus, suggesting to interpolate the rele-
vant curves in the wavenumber-frequency domain. It has been found conven-
ient to realize the interpolation process in the polar variables ( ϕρ ,k ), with 

θρ sinkk = , by using polynomial functions in ρk  and trigonometric functions 
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Fig. 2 2D dispersion curves of the of the first two poles, 1pω  and 2pω , and of the zero 1zω  of the FSS 

admittance dyadic. The dashed line represents the intersection with the surface 22
yx kkc +=ω . For value 

22
yx kkc +>ω  the data are extrapolated by analytical continuation. 
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in ϕ . Finally, by back substitution in the (kx,ky)-domain, the poles ),( yxip kkω  
and the zeros ),( yxiz kkω  are provided in analytical from the interpolation 
process. The surfaces kk =ρ is a zone in the dispersion diagram ),( yx kk−ω  
which crosses the dispersion surfaces of poles and zeros along the lines de-
picted in Fig.2  

Once derived an analytical expression for ),,(~ ωyx
FSS kkY , one can use it in the 

equivalent circuit in Fig.1, thus calculating in analytical form the voltage 
and currents at the FSS level. This quantities are directly proportional to 
the tangential components of electric and magnetic fields; thus obtaining 
magnetic and electric PO currents to be distributed on the curved reflector 
surface. The overall process is rigorous, accurate and extremely fast w.r.t. 
the massive multiparametric full-wave analysis. 
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5.2.1.4 POLITO 

FSS may be basically of two types, those that at low frequency are transpar-
ent (capacitive FSS consisting of an array of patches supported by dielec-
trics) and those that are reflecting (inductive FSS consisting of perforated 
screen).  The behaviour at the resonance frequency is complementary: the 
capacitive FSS are reflecting whereas the inductive FSS are transparent.  
Typically, the polarization and the incident direction of the electromagnetic 
wave influence these properties. The analysis of FSS is carried out by a spec-
tral technique.  This technique is well suited especially when dielectric sup-
ports are present. In fact, in this case, the spectral representation of the 
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Green function is known in analytical form. This formulation allows us the 
introduction of a vector transmission line representation where voltages and 
currents are the two-dimensional Fourier transforms of the transversal elec-
tric and magnetic fields, respectively. Shunt current generators, whose 
strength is unknown, represent the currents induced on the metal region.  
The key point of this approach is the construction of a vector functional 
equation in the spectral domain. This equation relates the two unknown 
functions of the problem: the Fourier transform of the aperture electric fields   
(the vector voltage at the discontinuity section) and the Fourier transform of 
the current induced on the metal region (the vector current generator).  The 
dielectric stratification, placed on both sides of the array are described, for 
each Floquet mode (propagating and evanescent), in terms of their scattering 
matrix. In this way, the relevant Green function is simply described by the 
dyadic load impedance seen by the current generator and the functional 
equation is obtained by means of circuit considerations. Even if the func-
tional equation contains two unknowns, the problem can be solved. In fact, 
the inverse Fourier transforms of the two unknowns have complementary 
supports: the apertures for the transversal electric field and the metal region 
for the induced currents.  By means of the Parseval Theorem this property 
yields the orthogonality between the two unknowns in the spectral domain.  
The orthogonality relationship can be seen as the second equation. Hence 
the problem can be solved by considering as primary unknown the current 
induced on the metallic region (patch approach) or the transversal electric 
field (aperture approach) according to the geometry of the discontinuity.   
When the metallic region has simple shape, for example strips, rings, 
crossed dipoles, tripoles, discs and so on, the patch approach is more conven-
ient. Whereas the aperture approach is convenient in the case of perforated 
screens where the apertures have simple geometry (e.g. slots). For both the 
approaches the scattering problem is solved numerically in the spectral do-
main by the Galerkin method of moments.  

  The solution is given in terms of the Generalized Scattering Matrix in the 
Floquet mode base. Hence, it is possible to study any aspect of the scattering 
phenomenon: reflection and transmission coefficients, the depolarisation ef-
fects, scattering of higher order harmonics and so on. On the basis of this 
representation, the analysis of multiple array structures can be done by cas-
cading the Generalized Scattering Matrices of each array. Obviously, The 
number of Floquet modes (propagating and evanescent) involved in the in-
teraction depends on the spacing between the arrays.   A key concept in this 
procedure is that of accessible Floquet modes and localized Floquet modes.  
This is, in turn, related to the two roles played by the Floquet modes in the 
analysis of the FSS. On one hand, the Floquet modes are used to represent 
the Green's function of the problem (this operator relates quantities defined 
in the same section of the discontinuity). On the other hand, the Floquet 
modes are used to represent the scattered fields from an array that, in the 
case of a multiple array configuration, are to be considered as incident fields 
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on the other arrays. It has to be remarked that the number of these Floquet 
modes is not necessarily the same of those used to represent the Green's 
function. The reason for this is that generally a finite distance exists be-
tween the array section and the one where the scattered field is of interest.  
Thus, a major role is played by the fact whether a mode is above or below 
cut-off. Hence, it is convenient to classify the Floquet modes as accessible or 
localized according to their attenuation between adjacent arrays being lower 
or higher than a specified threshold. Accessible modes, either propagating or 
evanescent, are responsible for the interaction through adjacent discontinui-
ties. Localized modes are so attenuated that they do not `see' the other ar-
rays and give rise only to energy storage if the dielectrics are lossless. In 
cascading the various GSM, only the accessible mode ports are involved, 
whereas the localized mode ports are disregarded. According to the defini-
tion of GSM, this amounts to terminate these with the input impedances of 
the dielectric loads.   From a computational point of view, it may be conven-
ient to decompose a multiple array FSS into single array cells where the di-
electric stratifications are considered.  In particular, the number of accessi-
ble modes may be different on the two sides of the array since the dielectric 
stratifications are generally different. The reference impedance is that of 
free space and the left reference plane is close to the grid, whereas the right 
one is close to the adjacent array.  In other words, a dielectric spacer belongs 
always to the array located at its left. The ports corresponding to localized 
modes are loaded with the input impedances of the relevant dielectric strati-
fications. It can be noted that in the cascading procedure, the matrix to be 
inverted has a size that equals the number of accessible modes, since only 
these are responsible for the inter-array coupling. If the distance between 
the arrays is such that only a few Floquet modes are accessible, the cascad-
ing procedure is obviously very convenient. On the other hand, for very small 
spacing, a coupled equation technique is more efficient, since almost all Flo-
quet modes, used in the characterization of each array, become accessible. 
These considerations explain why it is computationally very convenient to 
characterize each array directly in its dielectric environment, i.e. by using 
the application of the method of moments a Green's function that takes the 
dielectric structure into account. An alternative approach could be that of 
computing the GSM of the freestanding array and of the dielectric stratifica-
tion separately and then combining them by a cascading procedure. In this 
case, however, being the conducting elements printed on the dielectric lay-
ers, all the Floquet modes used in the characterization would be accessible 
and the matrix to be inverted would be impracticably large.   

In multiple array configurations, the various arrays  (even if all with the 
same lattice) may be stacked with a transversal shift between each other. 
Obviously, the combination of the GSM of the various arrays can be carried 
out only if they are all referenced to the same origin. Instead of studying all 
the arrays in the same reference system, we evaluate the GSM's in the local 
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reference system of the corresponding arrays, which is more convenient, 
then they are transform to refer them to the general reference system. 

When computing the field scattered from an FSS according to the formula-
tion described above, two series expansions are involved: for the patch ap-
proach, for instance, they are the representation of the induced current in 
terms of basis functions and the representation of the Green's function in 
terms of Floquet modes.  As for the basis functions, they may be entire do-
main or sub-domain types. The former can be used for regular geometries; 
the latter are more flexible and, in principle, may be used with very general 
configurations. An important point in the choice of basis functions is their 
ability to satisfy the conditions at the edges of the structure so that a small 
number of them are enough for an accurate numerical solution. However, it 
is to be noted that the elements of the scattering matrix can be considered as 
continuous linear functionals of the current distribution, which have a sta-
tionary point in correspondence of the solution of the scattering problem. For 
this reason, the accuracy of the reflection and transmission coefficients of the 
fundamental Floquet modes is always better than that of the representation 
of the current distribution.  

Another point to be taken into account to reduce drastically the computer 
time requirements is, of course, the availability in closed form of the Fourier 
transforms of the basis functions. Furthermore, due to the particular shape 
of some frequently used patches, it is not necessary to model all the current 
components to get accurate results. In fact, for instance in the case of  slen-
der strips, it is the current component parallel to the strip that is responsible 
for the first resonance. Hence, it is the only one that needs to be expanded 
for this frequency range, whereas the other components may be safely ne-
glected. Concerning the number of Floquet modes to take into account, es-
sentially two approaches are possible. One consists in keeping a very large 
number of Floquet modes in order to obtain a representation of the Green's 
function as accurate as possible.  Sometimes acceleration techniques for se-
ries summation have been used in the case of a freestanding array or simple 
dielectric stratifications. This strategy is appropriate when very specialized 
basis functions are used.  The other approach is followed when more or less 
''general purpose basis functions'' are used and then one tries to compensate 
for the inaccuracy in the unknown basis function representation with a cor-
responding inaccuracy caused by a truncated representation of the Green's 
function. The issue here is the relative convergence phenomenon. The key 
point is the best choice of the ratio between the number of terms retained in 
the two expansions. The case of a non-resonant iris in a rectangular 
waveguide has been studied in detail by numerical and analytical tech-
niques.  It has been shown that this ratio coincides with the ratio between 
the iris aperture width and the waveguide width when waveguide mode ei-
genfunctions are used to represent the aperture electric field. The cases that 
occur in the FSS analysis are much more complicated and no analytical 
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study can be applied. It is possible, however, to identify a criterion that is a 
generalization of the above mentioned one and that allows a correct analysis 
for very general patch or aperture shapes. In fact, one must recognize that 
the electric current induced on both sides of the metal elements is repre-
sented by means of two sets of functions, i.e. the basis functions and the Flo-
quet modes. Indeed, the total induced current equals the magnetic field jump 
between the left and right faces of the metal elements. Similarly, in the case 
of the aperture approach, the aperture electric field is represented in terms 
of basis functions and of Floquet modes. In order to have a well-conditioned 
system matrix, it is important that the accuracy of the two approximations 
is comparable. A possible way to enforce this condition is to require that the 
spatial bandwidth of the two representations is the same. This is not a rigor-
ous criterion, because the support of the basis functions in the spectral do-
main is not finite. However, as in many other problems, it is possible to de-
fine a measure of the spatial bandwidth and to choose the Floquet modes as 
those corresponding to the points of the reciprocal lattice that lie within this 
spatial band. The Fourier transforms of entire domain basis functions have 
an oscillatory behaviour with a maximum (main lobe) that moves further out 
the higher the order of the basis function. Therefore the spatial bandwidth of 
the representation, which in principle is infinite, can be defined in practice 
so as to include at least the main lobe of the highest order basis function 
considered.  

As far as the design activity is concerned, our approaches allow us to derive 
a fundamental equivalent circuit of each array by a de-embedding procedure. 
This concept allows us the use of the standard matching procedures of mi-
crowave engineering to design the whole structure.  Further details concern-
ing the methods of the analysis, the design technique and applications can 
be found in the publications cited in the bibliography. 

The patches on the arrays, or the apertures on the perforated screens, are 
periodically arranged in a skewed lattice defined by its basis vectors 1d  and 

2d  in the xy-plane in the points: 

21 dqdp
pq

+=ρ  

where 1d  and 2d  are the basis vectors of the direct lattice.  
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Consider two plane waves  (progressive and regressive with respect to ẑ ) 
whose incident directions are identified by the spherical coordinates iθ  and 

iϕ : 
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The field scattered from the structure can be described in terms of Floquet 
modes, which forms a discrete spectrum of plane waves. The transversal 
electric field of the progressive and regressive waves can be written  as: 
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The vectors 1σ  and 2σ  are the basis vectors of the reciprocal lattice, related 
to those of the direct lattice by the following expressions: 
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Figure 1 Lattice geometry 
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The Generalised Scattering Matrix (GSM) computed by the program  CFSSS 
and  IFSSS relates the power waves pqb  and pqa . As is well known, pqb  and 

pqa  are associated to the scattered and incident modal voltages .)(scatt
pqV  and 

.)(inc
pqV . 

For the propagating plane waves the GSM turns out to be the usual scatter-
ing matrix S. The relationship between the principal polarisations of the 
plane waves and the power waves becomes: 
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where 000 εµ=Z  is the free space impedance, and pqθ  is the incident angle: 
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The reference directions for the electric field are 
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TE

pq zu σ̂ˆˆ )( ×=                             for the TE polarisation 
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pq zu θθσ cosˆsinˆˆ )( m=        for the TM polarisation 

where the sign is related to the progressive and regressive state of the plane 
wave. 
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Figure 2 Plane of incidence. Reference Polarizations. 
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Usually only the 00TE  and 00TM  Floquet modes are propagating, whereas the 
other plane waves are evanescent. In this conditions, and according to the 
previous definitions, the scattering matrix relates the θ  and ϕ  components 
of the incident and scattered electric fields. Figure 1 shows the reference di-
rections of the electric field in a generic plane of incidence ( )ẑ,ρ̂  perpendicu-
lar to the unit vector  ϕ̂ .  CFSSS and  IFSSS recognise in the angles θ  and 
ϕ  the direction of the wave vector .)(inc

Leftk corresponding to the incident pro-
gressive plane wave.  

When 0=θ  (normal incidence) the two fundamental Floquet modes degen-
erate and become TEM modes. In this case the labels TE and TM are as-
signed for continuity by considering the value of ϕ . For example, with 0=ϕ , 
the TE and TM labels correspond to the electric fields polarised along ŷ and 
x̂ , respectively. Whereas with 2πϕ = , these labels refer to the directions 

x̂−  and ŷ , respectively. 
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5.2.2 Multilayer planar FSS 

5.2.2.1 Lund 

 

Figure 1  Geometry of a slab with two FSS’s supported by arbitrary, 
general slabs. 

A multilayered structure can be composed of thin FSS’s separated by biani-
sotropic slabs, as in the figure above. To analyse this kind of structure, it is 
usually required to set up the currents on each thin FSS as free variables (a 
current sheet), and propagate the fields generated by these currents to the 
neighbouring sheets. This establishes a coupling between the different 
sheets, and the boundary conditions on the outmost sheets are used to de-
termine the final distribution of the currents.  

A general method for treating an arbitrary number of screens separated by 
arbitrary bianisotropic substrates is presented in [1-2]. The current sheets 
are represented in the spectral domain as a Fourier series, and the full tan-
gential fields are propagated from one sheet to another using a propagator 
formalism, i.e., solving a system of ordinary differential equations for the 
unsplitted, total fields. This means the current sheets can be calculated di-
rectly from the outmost boundary conditions, and eliminates the need for 
cascading reflection and transmission matrices. The periodicity of the FSS’s 
must be commensurate. 

The propagator formalism allows the permittivity of the slabs to change con-
tinuously as well as discretely. This was used to analyse geometries such as 
pyramidal absorber-like structures used in anechoic chambers in [3].  
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5.2.2.2 TNO 

The integral equation formulation for both patch [1] and aperture based 
FSS, and the consequent derivation of the equivalent network representa-
tions (Fig.1), are described in section 5.2.1.2. The number of ports in these 
networks corresponds to the number of accessible modes necessary for an ac-
curate modelling of the interaction between the different regions. 

 

    
(a) (b) 

Figure 1  (a) Multimode equivalent admittance network for the patch 
based FSS. (b) Multimode equivalent impedance network for 
the patch based FSS. 

In this section, a particular emphasis is given to the MEN formulation [2], 
[3], which allows an efficient analysis of multilayer FSSs.  The equivalent 
admittance or impedance representation of the single FSS is cascaded with 
those of the modal equivalent transmission lines representing the dielectric 
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layers separating the FSSs. In Fig.2, it is shown an example of multilayer 
structure with the corresponding network representation. This example 
shows the case of a patch based FSS. In this case, a shunt admittance repre-
sentation is used. For the dual problem of an aperture based FSS, the dual 
representation in terms of a parallel impedance network must be used. The 
MEN approach is also perfectly suitable for the analysis of FSS panels inte-
grated with array antennas. This particular aspect will be addressed in Sec-
tion 5.5.1. 

 

εεεε r1  d 1 εεεεr2d4 εεεεr3d3
FS FS

1 2 3

[Ytr i -j ] = Multi-mode admittance matrix of 
patch FSS coupling regions i and j

[Z wg i Multi-mode impedance matrix of 
the i-th region 

] = 

[Z [Z wg wg 2 1 ] ] [Z[Zwgwg42]] [Z[Zwgwg63]]
]

 
1-2[[Y tr tr -1 ]

 
2-3[[Ytrtr

-1

 
Figure 2  Schematic representation of a multilayer FSS problem (unit 

cell) and its pertinent multimode admittance/impedance rep-
resentation. 

The inherent modularity and flexibility of the approach is particularly useful 
in the design of complex multilayer structures. In fact, the preliminary de-
sign can be extremely simplified resorting to a single mode model. This can 
be derived starting from few full-wave simulations of the single FSS, where 
only the fundamental Floquet mode is taken as accessible mode. The equiva-
lent admittance or impedance of the FSS, over the whole frequency band of 
interest, is then approximated with a proper Taylor series expansion. This 
first design is then successively refined with a full-wave multimode analysis 
of the overall structure. Even in this case, the tuning can be done in a very 
efficient way, thanks to the fact that only the part of the overall structure 
that is actually modified must be recomputed, while the model of the re-
maining unperturbed part, already available form previous simulations, can 
be simply reused. 

Fig.3 shows an example of a double layer FSS of folded dipoles sandwiched 
between two matching dielectric layers [4]. The FSS core and the two match-
ing layers have been realised gluing together several dielectric slabs 
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(Fig. 3a). A detail of the manufactured structure is shown in fig. 3b. Fig. 3c 
shows a comparison between experimental and theoretical results. 

Copper 
layers 

 = Bond Film 
 

Extern. Match. Layer  
εr = 1.5

FSS internal core  
εr = 2.2

Extern. Match. Layer  
εr = 1.5

 
(a) 

  

 (b)                                                            (c) 

Figure 3  Double layer FSS of folded dipoles sandwiched between two 
matching dielectric layers. The FSS core and the two match-
ing layers have been realised gluing together several dielec-
tric slabs (Fig. 3a). A detail of the manufactured structure is 
shown in Fig. 3b. Fig. 3c shows a comparison between ex-
perimental and theoretical results. 
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5.2.3 Planar FSS, thick structures (waveguide) 

5.2.3.1 Lund 

 

Figure 1  Some possible unit elements for thick-screen FSS applications 

In a thick FSS, it is no longer possible to ignore the thickness of the metallic 
plate, which makes up the FSS. Referring to vacuum wavelengths, an FSS 
can be considered thin at least when it is less than λ/1000 thick [1]. A com-
mon design is when the metal is perforated by apertures, which is similar to 
an array of waveguides. 

To solve for the scattering matrix from such an FSS, a mode matching tech-
nique is employed, where the Floquet modes of the surrounding medium are 
matched to the waveguide modes in the apertures. This results in a matrix 
equation, which can be solved when the boundary conditions for the incident 
and scattered fields are introduced. The waveguide modes are calculated by 
finite elements, and thus arbitrary cross sections can be analysed. The trun-
cation of the Floquet series and the waveguide mode expansion is guided by 
the rule of thumb that the largest transverse wave number should be 
roughly equal in both series, which means both series must be equally accu-
rate in describing the transverse variation of the fields. In [2], it is found 
that the bandwidth decreases when the thickness of the screen is increased, 
as shown in the figure below. 
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Figure 2       Transmission dependence of thickness for annular apertures [2]. 
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5.2.3.2 TNO 

Thick FSSs consist normally of perforated metal screens of not negligible 
thickness. The corresponding apertures in the ground plane act as metallic 
waveguides of finite dimensions. Therefore a traditional field expansion in 
terms of waveguide modes is the most natural approach in the analysis of 
such structures.  

The Multimode Equivalent Network technique, presented in section 3.3 and 
more detailed in 5.2.2.2, represents also in this case a very effective way of 
approaching the problem. In fact, already for the simplest configuration con-
sisting of a single thick FSS, the structure can be seen as a cascade of three 
adjacent waveguides: the two phase-shift-wall waveguides representing the 
free space and the waveguide representing the aperture in the screen. The 
network representation is obtained resorting to a modal expansion of the 
fields in different regions (Floquet’s modes for the open region and the 
waveguide modes for the metallic waveguide). By imposing the continuity of 
the electromagnetic field at the apertures, a set of integral equations (IE) 
can then be derived.  

The unknown is represented by the electric field on the transition area 
(screen aperture). In the Method of Moment solution of the integral equa-
tions a crucial aspect in terms of accuracy and efficiency is the choice of the 
expanding functions for the unknown field.  
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The most flexible but not always the most efficient choice is given by sub-
domain (piece-wise sinusoidal/linear) expanding functions. Their simplicity 
renders extremely efficient the evaluation of the coupling integrals in the 
kernel of the integral equations and also allows the analysis of any complex 
geometry. As drawbacks, it is normally required a rather large number of 
expanding functions to obtain an accurate field description and their large 
spectral content makes also the IE kernel slowly converging.  

A less straightforward but sometimes very effective choice is given by full-
domain modal representations. This last case becomes very attractive if used 
in combination with efficient techniques for the derivation of the eigenmodes 
of arbitrarily shaped waveguides (corresponding to the arbitrary geometry of 
the FSS apertures), like for example the BIRME [1] or BCMM (boundary 
contour mode matching) [2] methods. The same modes, in fact, are used also 
in the derivation of the equivalent network of the waveguide itself. 

Furthermore, an accurate description of the field can be obtained with a 
relatively small number of functions and their small spectral contents make 
the IE kernel rapidly converging. On the other side, their evaluation is nor-
mally time consuming and their analytical complexity renders more difficult 
the evaluation of the coupling integrals with the Floquet’s modes expansion 
of the external region. On the contrary, it is must be highlighted that since 
the expanding functions used at the interface coincide with the modes of the 
metallic waveguide, the evaluation of the coupling integrals with these 
modes is trivial thanks to the modal orthonormality property. 

Basically the advantages and drawbacks in using these different expanding 
functions can be summarised as follows. 
Eigenmodes expansions: 
Advantages 
• Smaller set of expanding functions 
• Small spectral content: the kernel of the I.E. is more rapidly converging  
• Aperture FSS: optimal choice for thick screens 
Drawbacks 
• Less flexible: eigenmodes derivation is time consuming 
• Complex analytical form: onerous coupling coefficient evaluation 
Subdomain expanding functions: 
Advantages 
• Very flexible: easy to use also for complex geometries 
• Simple analytical form: fast coupling coefficient evaluation 
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Drawbacks 
• Larger set of expanding functions 
• Large spectral content: the kernel of the I.E. is slowly converging and 

therefore an acceleration technique is needed 
• Aperture FSS: limitation to thin screens 

In Fig.1 is shown a thick FSS (rectangular apertures) conformal to a circular 
cylindrical array of open-ended waveguides [3]. The reflection coefficient 
measured at the input port of the rectangular waveguide is shown in Fig.2 
for different values of the FSS aperture dimensions. 

In Fig.3 is shown an example of a cross-shaped aperture FSS, which has 
been modeled adopting full domain modal basis functions derived with the 
BCMM method. The relative reflection coefficient is shown in Fig.4. 

 

FSSDielectric
layer

Open-ended
waveguides

 

Figure 1  Thick FSS of rectangular shaped apertures conformal 
    to a cylindrical array of open-ended waveguides. 
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Figure 2  |S11| vs. frequency of the array shown in Fig. 1, for different 

values of the width ‘a’ of the aperture of the FSS (8.48 mm 
high, 2.5 mm thick). Cylinder radius: 0.75 m; Number of radi-
ating elements in each row: 50. 

 

 
Figure 3  Example of cross-shaped aperture FSS. Drawing not in 

scale.(A=11.0mm, B=24.0mm, C=1.0mm, D=6.0mm, 
E=2.0mm, F=6.0mm, G=1.0mm, H=1.0mm) 
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Figure 4  Reflection coefficient of the FSS shown in Fig.3. 
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5.3 Artificial and complex surfaces 

5.3.1 Artificial PMC (Siena) 

An artificial magnetic conductor (AMC) is an engineered electromagnetic 
material used to control surface currents in antenna and EMI applications 
[1],[2]. AMCs implement a lossless reactive surface whose surface impedance 
approximates an open circuit (high impedance) [3] over a specific bandwidth. 
As a periodic surface, they also exhibit a surface wave band gap [4]. AMC 
technology describes an electrically thin periodic surface, which has both 
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high-impedance and surface wave band gap properties, over similar but fi-
nite frequency bands. AMCs are typically realized as printed circuit periodic 
structures. An example is shown in Figure 1 whereby a capacitive frequency 
selective surface (FSS) is realized with conductive patches on the front side 
of the AMC, and conducting vias connect these patches to a conducting 
backplane (RF ground) on the back side of the AMC. Practical AMCs can be 
made as thin as 0λ /50 were lo is the free space wavelength at the AMC reso-
nant frequency (defined by a 0° reflection phase). 
 

 
 
AMCs reflect plane waves in-phase at their resonant frequency, which is 
contrary to a metal surface that reflects plane waves out of phase. As a peri-
odic structure, AMCs also suppresses bound surface waves over a range of 
frequencies known as a bandgap or a stopband. Thus, AMCs have applica-
tion to limit the mutual coupling between adjacent antennas without absorb-
ing power and degrading antenna efficiency [5],[6],[7].  
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5.3.2 1D EBG surfaces 

5.3.2.1 Planar Strip Grating (TNO) 

In Figure 1, the two possible ground plane configurations of a single dielec-
tric slab loaded by a 1D periodic planar strip grating are shown with their 
relevant parameters. The procedure for the evaluation of the electric cur-
rents on the strip grating presented in [1] is based on an Electric Field Inte-
gral Equation (EFIE) approach adopting a spectral integration formulation. 
Both incident and scattered fields are expressed in the spectral domain, and 
the Poisson summation formula is adopted in order to perform an efficient 
evaluation of the series in the integral equation kernel. The method has 
been presented for the TM case, but it can be easily extended to the analysis 
of the TE case. 

 

 

 

 

 

 (a)       (b) 

Figure 1   Planar Strip Grating a) Dielectric Slab. b) Grounded Dielec-
tric Slab. 

Once the EBG spectrum is obtained, a dispersion equation can be set up in 
order to analyze its polar singularities. These singularities define the modes 
that can propagate in the slab loaded by the strip grating. Figures 2a,b 
shows examples of the real and imaginary part of the dispersion equation so-
lution. Varying two geometrical parameters, the grating periodicity and the 
strip dimension, the band-gap can be tuned.  
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  (a)  (b) 

Figure 2  Real and imaginary part of the TM0 pole as function of the 
frequency for a dielectric slab (εr = 10, h =5mm). Dispersion 
diagrams for different periodicities (a); and for different strip 
widths (b). 
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5.3.2.2 Strips and corrugations (Chalmers) 

Most common realizations of soft or hard surfaces (Chapter 2.2) are one-
dimensional periodic structures that have band-gap or band-pass character-
istic, i.e. usually they are realized as a corrugated structure or as a strip-
loaded structure (Fig. 1). The rigorous analysis of the corrugated or the strip-
loaded open surface can be performed by expanding the fields into Floquet 
modes or by expanding the currents into the basis functions (Chapter 3.1). In 
the latter approach the amplitudes of the Floquet modes are implicitly de-
termined by calculating the unknown current [1]. The Floquet mode ap-
proach can be time-consuming if the source such as e.g. a dipole excites a 
spectrum of plane waves. Other rigorous approach is to take into account the 
finiteness of the structure and to use e.g. FEM or FDTD. Then, the computa-
tion time becomes large, but it will not depend on  the type of source.  

The analysis of the corrugated and strip-loaded surfaces can be simplified by 
using the asymptotic boundary conditions (Chapter 3.4 and [1]-[3]). In the 
model for corrugated surface the corrugated region is modelled by consider-
ing a parallel plate medium with incremental spacing between the parallel 
plates and with a metal shunt corresponding to the bottom of the corruga-
tions. The field inside each incremental corrugation is not varying in the di-
rection perpendicular to the parallel plate walls. However, the field in the 
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total corrugated medium (encountering several incremental parallel plates) 
is matched to the outer field that generally varies in the direction perpen-
dicular to the corrugations, and this will cause a discrete variation of the 
field from corrugation to corrugation in the corrugated medium. Similarly, 
the layer with metal strip grid can be modelled by setting the tangential par-
allel E-field component to zero over the whole grid, and by setting both the 
tangential perpendicular E-field and parallel H-field components continuous 
across the grid.  

In order to be able to analyse radiation properties of general sources above 
multilayer structures, the above-mentioned asymptotic boundary conditions 
have been implemented in the G1DMULT algorithm that calculates spec-
tral-domain Green’s functions of multilayer structures (Chapter 3.6 and [4]). 
More accurate boundary conditions for finite periods of strip-loaded and cor-
rugated surfaces can be derived by a homogenization process [5], i.e. by av-
eraging the electromagnetic fields of the fundamental Floquet mode. 

 

 

         (a)              (b) 

 

Figure 1  (a) corrugated surface, (b) strip-loaded surface 
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5.3.3 2D EBG surfaces 

5.3.3.1 Siena 

Recently, a lot of research efforts have been devoted to periodic planar sur-
faces used to generate new equivalent boundary conditions. These studies 
have stimulated various engineering applications in the field of microwave 
and antennas. In some applications, these surfaces constitute the modern 
version of transversely corrugated structures, often used to improve the per-
formance of feed-horns. In the early nineties, the so-called “soft” and “hard” 
surfaces (terminology derived from acoustics) were introduced and their re-
lationships with the classical corrugated structures were discussed [1]. The 
soft surface behaves like a perfectly electric conductor (PEC) for TE polari-
zation and as a perfectly magnetic conductor (PMC) for the TM polarization; 
vice-versa for the hard surface. Various solutions were presented in the past 
for devising such surface properties, which are based on printed strips 
short-circuited to a ground plane. This paper present new solutions for hard 
and soft surfaces realized by printing a “gangbuster type” frequency selec-
tive surface (FSS) [2] on a grounded slab. Depending on the direction of 
wave propagation and on the nature – capacitive or inductive – of the 
printed FSS, these structures exhibit alternatively hard or soft properties. It 
is well known that perfectly magnetic and relevant bandgap properties can 
be realized by printing FSS on a grounded dielectric slab. The gangbuster 
FSS surface was introduced by B. Munk as anisotropic FSS with out-
standing performance [2]. Nader Engheta suggested the use of this type of 
gangbuster dipoles for the realization of a metamaterial medium [3] as well 
as for obtaining equivalent magnetic conducting effects for certain polariza-
tions [4]. The main purpose here is to show that the gangbuster FSS leads 
to artificial soft and hard properties depending on the propagation direction 
relative to the orientation of the slots or dipoles on the printed surface. To 
this end, consider first the structure in Fig. 1a, constituted by a dipole FSS 
printed on a grounded slab. Assume first that the direction of propagation is 
along the dipoles. The interaction with the structure is very different for the 
two polarizations. 
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The TM wave possesses E-field along the dipoles and therefore strongly in-
teracts with the FSS. The behaviour of the system is described by the simple 
equivalent circuit in Fig. 1b. There, the LC series circuit represents the 
global homogenized behaviour of the FSS in a z-transmission line with TM 
characteristic impedance. The loading of the ground plane represents a par-
allel inductance to the series circuits, which has a parallel resonant effect 
with the dipole capacitance, thus producing the PMC behaviour. For TE po-
larization, the dipoles (very thin) are orthogonal to the electric field, and do 
not interact with the FSS. Consequently, the behaviour is the same as that 
of a bare grounded slab with very small thickness, which is therefore only 
slightly different from a PEC. In summary, for propagation along the di-
poles, and in a certain bandwidth, the surface exhibits high-impedance for 
TM polarization and low impedance for TE polarization, thus being artifi-
cially soft.  

On the contrary, when the direction of propagation is orthogonal to the di-
poles, the roles of  TE and TM polarization are interchanged, because the TE 
wave now interacts with the dipoles; thus, realizing a hard surfaces. For this 
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(a)                          (b) 

 
Fig. 1 Gangbuster dipole surface printed on a ground plane. (a) geometry: L=10mm, W=0,25 mm t=0,25 mm, 
D=5,127mm, h=1mm, epsr =4. (b) equivalent z-transmission line for the polarisation which interact with  the FSS. 
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Fig 2 Phase of the reflection coefficient versus the incidence angle. (a) hard and (b) soft cases. 



82 ACE WP2.3-2 

case the equivalent z-transmission line is essentially that in Fig. 1b, but 
with TE characteristic impedances.  

Fig. 2 presents the phase of the reflection coefficients versus the incidence 
angle θ  with respect to the normal for the two directions of propagations and 
the two polarizations. The results have been obtained by using a full-wave 
method of moment analysis. For the parameters set in Fig. 1, the operative 
frequency is found to be 7,8 GHz. For the hard case (Fig. 2a, orthogonal to 
the dipoles) the phase is quite stable around 160° for TM case and around 0° 
for TE case, except near grazing angle of incidence where the frequency 
bandwidth is quite small. For the soft case (Fig. 2b), the phase of the reflec-
tion coefficient oscillates for TM case around 0° (with oscillation range 
within 90°) and remains stable at 160° for the TE case. 

 

 

When the surface is realized with a slot-type gangbuster FSS (Fig. 3a), the 
behaviour of the structure is complementary. The surface is hard or soft de-
pendent on whether the propagation direction is along the slot or orthogonal 
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Fig. 3 Gangbuster slot surface printed on a ground plane. (a) geometry: L=10mm, W=0,25 mm t=0,25 mm, D=5,127mm, 
h=1mm, epsr =4. (b) equivalent z-transmission line for those polarizations which interact with  the FSS 
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Fig 4. Phase variation with the incidence angle associated to the FSS-slot structures. (a) soft (b) hard 
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to the slot, respectively. The equivalent z-transmission line for the case in 
which the wave interact with the slot is shown in Fig. 3b, and consists on a 
parallel LC circuit with an inductance loading due to the ground plane. The 
fact that the FSS circuit is in parallel in place of series (compare with Fig. 
1b) implies an overall resonant frequency which is higher with respect to 
that for the dipole structure, being the thickness equal and FSS dimensions 
complementary equal.  

For direction of propagation along the slot and TE polarization, the electric 
field is orthogonal to the slot, so that the wave interacts with the FSS and 
the structure realizes a high impedance surface. Since for TM polarization, 
the wave feels essentially a PEC ground plane, the surface is almost hard. 
On the contrary, when the direction of propagation is orthogonal to the slots, 
the roles of TE and TM polarization are interchanged, because the TM wave 
now interacts with the slot; thus, realizing a soft surfaces.  

Fig. 4 presents the phase of the reflection coefficients versus the incidence 
angle θ  with respect to the normal for the two directions of propagation and the two 
polarizations. For the parameters set in Fig. 3a, the operative frequency is 
found to be 12,7 GHz. The phase for the artificially soft case (Fig. 4a, or-
thogonal to the dipoles) is quite stable around 180° for TE case and oscillates 
around 0° for TM case, with a small dispersion with the frequency variation. 
For the hard case (Fig. 4b, parallel to the dipoles), the phase of the reflection 
coefficient remains stable at 180° for the TE case and is around 0° for TE 
case only for a limited range of incidence angle. In conclusion, the hard be-
haviour is ensured only for incidence angle near broadside and for a re-
stricted range of frequency.    

The EBG properties of this structure could be obtained by using the analyti-
cal representation of the Bangbuster structure as that shown in Sec. 5.2.2.1 
To this end the resonant equation is formulated on the basis of the equiva-
lent network in Sec 5.2.2.1 (Fig.1)  

Through the admittance matrix formalism, the equivalent network is recon-
structed as shown in Fig.5.  

 

 

 

 

Fig. 5 Equivalent network for the resonance equation. 
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The equivalent current [ ]eh III = , associated to the transverse magnetic 
field, and voltage [ ]eh VVV = , associated to the transverse electric field, are 
related by the characteristic admittance of the free-space, that is VYI 0−= , 
with 

         (4) 

 

At the same time, current and voltage are related by the VYI = where 

                                       (5) 

 

where )(,0, dkctgjYY zd
d

he
cc
he −= . This leads to the relationship VYI = . This equa-

tion admits non-trivial solutions when the determinant of the matrix is zero, 
leading to the following resonance equation 

0)det( 0 =+ YY      (6) 

When searching for surface wave solutions, we assume that the expression of 
the FSS admittance is analytically continued in the non-visible region. This 
means that the pole and zero dispersion diagram is extrapolated for values 
of ρk greater that k until the limit of the Brillouin zone. 

 

Fig. 6 Dispersion curve for surface wave mode for periodic printed dipoles. The basic cell is shown in the inset. 
The coloured region up to the light line represents the phase of the reflection coefficient for plane wave incidence. 
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The dispersion diagram along the square path of the kx,ky plane is shown in 
Fig.6, which shows the dispersion curve of both TE and TM mode. The TE 
and TM modes are supported only when the direction of propagation is par-
allel (soft case) or orthogonal (hard case) to the dipoles. In the intermediate 
region of wave-direction the modes are hybrid. The dispersion curves exhibit 
a partial, band gap for a large portion of the diagram. 

To summarize, we have introduced two different types of structures, which 
behaves like soft and hard surfaces in a certain frequency bandwidth. The 
structures are realized by gangbuster FSS printed on grounded dielectric 
substrate without any vias to the ground, therefore providing a particularly 
easy manufacturing. Preliminary results have been presented to show the 
reflection properties of the structures. These results have confirmed the di-
pole-type gangbuster surface may exhibit both soft and hard surface charac-
teristics, but with some uncertainty about the hard case near grazing as-
pects (fast frequency variations). The slot-type gangbuster surface behaves 
well for the soft case for all angles of incidence, but it does only represent a 
hard surface near normal incidence. Further investigations are presently 
concerned with the bandgap analysis and waveguide modal propagations. It 
is interesting to note that longitudinal dipoles generate the soft surface and 
transverse dipoles the hard surface, whereas the slots behave similar to cor-
rugations in this sense, i.e. longitudinal slots (and corrugations) provide the 
hard surface and transverse ones the soft surface. 
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5.3.3.2 Chalmers 

Like in the case of 1D EBG surfaces (Section 5.3.2) the analysis of different 
EBG surfaces can be simplified using approximate boundary conditions 
(Chapter 3.4). The grounded bed-of–nails (Fig. 1a) can be considered as a 
uniaxial anisotropic media with permittivity and permeability tensors [1]. 
Due to anisotropy there is a fundamental difference in propagation of TEz 
and TMz waves. The TEz waves do in principal not see the nails since the 
electric field is perpendicular to them. Therefore, TEz waves propagate like 
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in the ordinary slab with a little bit modified relative permittivity and per-
meability. For TMz waves the bed-of-nails acts as a medium with negative 
effective permittivity. The separation into TEz-TMz modes is obtained in the 
spectral domain.   

In principle, the mushroom structure consist of a grounded bed-of-nails 
and of a periodic patch array where each patch is attached on the top of one 
nail (Fig. 1.b). The array of patches forms a capacitive screen and therefore 
it can be simply analysed using grid impedance approach [2]. 

In order to be able to analyse radiation properties of general sources above 
different EBG surfaces, the analysis model has been implemented in the 
G1DMULT algorithm that calculates spectral-domain Green’s functions of 
multilayer structures (Chapter 3.6). In this way mutual and self coupling of 
dipole antennas above different types of EBG structures have been analysed 
and compared with coupling above ideal PEC, PMC, soft and hard surfaces 
[3].  

 

 

   (a)              (b) 

Figure 1  (a) grounded bed-of nails structure, (b) mushroom structure 
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5.4 Special surfaces 

5.4.1 Carbon Fibre Reinforced Plastic 

5.4.1.1 Lund 

Carbon Fibre Reinforced Plastic, CFRP, is an attractive alternative to met-
als as a structural material. Even though it generally has lower stiffness, its 
low density (almost half of aluminium, a fifth of steel) makes it an ideal ma-
terial for space applications. CFRP is a composite material, essentially made 
up of conductive carbon fibres in a plastic matrix.  

The physical properties of the material depend fundamentally on the 
amount and direction of fibres used, where the most important property for 
electromagnetics is the conductivity. When all the fibres are aligned in one 
direction, the conductivity is strongly anisotropic [1]. The conductivity along 
the fibres is simply the mean value of the respective conductivities, weighted 
by their respective volume fraction. The transverse conductivity depends on 
microscopic structure, and can be found by solving a two-dimensional ver-
sion of the local problem defined in Chapter 3 Analysis methods, Homogeni-
sation. For small volume fractions of the fibres the transverse conductivity 
varies linearly with the volume fraction, but when sufficiently many fibres 
are present, a percolation phenomenon occurs and the conductivity increases 
dramatically at a certain threshold. For fibres with identical radii, the criti-
cal volume ratio is about 67%, somewhat higher for fibres with a size distri-
bution.  

When homogenising conductive fibres, it is important to be very careful with 
the assumption about perfect conductivity, since the limits of vanishing mi-
croscopic scale (homogenisation) and infinite conductivity do not commute 
[2]. Starting with PEC fibres, the homogenised permittivity is smaller by a 
factor (1-f) compared to taking the PEC limit after homogenisation, where f 
is the volume fraction of the fibres. In [2] it is also shown that for small vol-
ume fractions, the permittivity along PEC fibres can be modelled as a 
plasma, i.e., ω ω≈ 2/ )pÎ 1 - (  where ωp  is the plasma frequency. 
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5.4.1.2 POLITO 

Reflector antennas made of carbon-fibre-reinforced plastics (CFRP) are a 
source of intermodulation products (IMP), together with higher harmonics, 
because of the relatively nigh level or intrinsic non-linearity shown by 
graphite. This may cause serious problems in systems where an IMP or two 
transmitted frequencies is near to a received frequency, since the IMP power 
backscattered into the feed may have about the same level as the signal to 
be received.  

The linear behaviour has been investigated, mainly experimentally, by sev-
eral authors [1-3], while non linear effects have been considered only from a 
qualitative point of view among other sources of inter-modulation (joints, 
weldings, etc.) common also to metallic reflectors [4, 5]. Bulk non-linear ef-
fects in CFRP panels have received attention from a theoretical point of view 
[6, 7]. 

It is assumed that only a small fraction or the incident power is converted 
into higher harmonics, so that the non-linearity can be studied in a pertur-
bative manner: therefore, if we assume that the field-current characteristics 
of the graphite is cubic, only third order harmonics and IMPs will be gener-
ated, according to the scheme of fig. 1.  

Carbon-fibre panels used in reflector antenna technology are usually com-
posed or a small number (e.g. 4) of plies made of unidirectional fibres im-
mersed in an epoxy resin matrix whose relative dielectric constant is be-
tween 3 and 4. Single fibres (diameter of about 8-10µm) are grouped in yarns 
having a diameter of about 0.1 mm, which corresponds to the thickness or 
the ply. In fig.2 we show an example of this structure, which can be mod-
elled, from an electromagnetic point of view, as a layered biaxial anisotropic 
(lossy and non-linear) material, whose permittivity matrix is given by: 
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+
+

+
=                      (1) 

 

where the conductivity along x' (parallel to the fibres) is much greater than 
that along y' and z. Typical values for the former are 10-100 kS/m, while 
those suggested in the literature for the latter are: σy1 = 100 S/m, σy = 40 
S/m. 
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The linear model (originally proposed [3] for frequencies up to 1 GHz) has 
been validated also at higher frequencies by comparing the reflectivity for 
normal incidence of a panel 0/90/9010 with experimental data [2]. Good 
agreement has been found, as shown in fig.3. 

The non-linear behaviour can be obtained starting from the following rela-
tionship between field and current density (both parallel to the fibres): 

                             (2) 

Considering two incident plane waves at different frequencies, and comput-
ing the total field parallel to x', the current density can be obtained, with 
some manipulation, from (2). The backscattered field at the interface is then 
computed by using the Green's function of an anisotropic stratified structure 
[8] and by integrating the contributions from all sections of the panel. It can 
be shown that a multilinear relationship exists between the transverse com-
ponents of the incident (i) and scattered (s) fields; on introducing a proper 
contracted-index backscattering tensor, this relationship can be written in 
the form (where W3=2W1-W2): 

 

(3) 

 

Tensor B is a function of several parameters: angle of incidence, frequency, 
physical characteristics of the panel. Fig. 4 shows the behaviour of B1 and 
B12, for normal incidence, on a structure 0/90/90/0, ply thickness 60 microns, 
W1≈W2≈W3. In this particular case, all other coefficients are zero. B12, the 
coefficient for incidence perpendicular to the fibres of the first layer, is 
clearly dominant. This can be physically explained by noting that for paral-
lel incidence the wave does not penetrate into the layers, giving therefore 
low intermodulation together with low losses. For oblique incidence, the 
other coefficients are non-zero but generally lower than the dominant ones, 
and will not be shown here for sake of brevity. Other structures (e.g. 0/±60) 
have a more complex behaviour: B12 is still dominant but all other terms are 
non-zero even for normal incidence: in particular B6 (parallel component 
backscattered from the perpendicular components of the incident fields) has 
some importance. 
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For an incidence angle not too for from the normal, the IMP level strongly 
depends on the frequencies involved, in particular when the beat frequency 
is low. In fig. 5 we show the amplitude of element B12 of the backscattering 
matrix, as a function of f1 and f2: it can be noted that it increases with f3 and 
has a minimum when f3=0. An approximate formula, empirically found, 
gives the dependence on the frequencies as: 

                                      (4) 

where C1 and C2 are suitable constants. If f3≈0 (i.e. 2fl≈f2) the first term 
dominates; when |f3| increases, the amplitude of B12 increases with the 
square of the frequency. 

The dependence on the dielectric constant is neglig1ble. Computations made 
for values ranging from 3 to 4 have not shown significant changes. Finally, 
increasing the thickness of the ply leads to a slightly higher level of IMP, as 
shown in fig.6 for both configurations 0/90/90/0 and 0/±60. 

 

For normal incidence, the backscattered power density can be expressed in 
logarithmic units as: 

 

                            (5) 

both for parallel (i=l) and perpendicular (i=12) incidence, while the direction 
of propagation of the IMP backscattered wave can be derived from 

                                                (6) 

As a consequence, the IMP wave has the same direction as the reflected 
waves only if f1 and f2 have the same incidence direction. 

 

The IMP power backscattered from a reflector antenna into the feed can be 
computed with standard techniques for different configurations. Assuming, 
for sake of simplicity, P1=P2 at about the same frequency (so that feed gain 
and space attenuation are nearly frequency independent), and indicating 
with B the factor corresponding to the first term of (5), we get, for a center 
fed paraboloid: 
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                                           (7) 

where F is the focal distance and G is the feed gain. For a hyperboloid we ob-
tain:  

                                      (8) 

where D=a+c is the distance between feed and vertex, and δ=(e-l)/2e. 

 

Similar, though more complicated expressions, can be derived for the offset 
case and/or for multi-feed configuration. 
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5.4.2 Honeycomb structure (Lund) 

The honeycomb structure is a cellular, lightweight structure. It is usually 
made up of cylindrical, hexagonal unit cells, which provides mechanical 
strength using a small amount of material. When the cell material is highly 
conducting, the structure can be used as a reflector surface, but usually the 
material has low permittivity with small losses, and is intended as a dis-
tance material having small effective permittivity. 

Provided the cell size is much smaller than the wavelength, the homogenisa-
tion technique described in Chapter 2 can be used. The complex permittivity 
for electric fields along the cylinder axis is exactly the mean value of the 
complex permittivities of the cell walls and the core, weighted by their re-
spective volume fractions. The transverse permittivity is isotropic, and in 
the limit of thin walls it varies linearly with the thickness of the walls. If the 
walls are highly conducting compared to the core, we have the exact result 

eff / /σ σ = 2f , where σ  is the conductivity of the walls, and f is the volume 
fraction of the wall material [1]. 



92 ACE WP2.3-2 

References 
[1] S. Torquato. Random Heterogeneous Materials: Microstructure and 

Macroscopic Properties. Springer-Verlag,  New York, Inc, 2002. 

5.4.3 Tricot meshes (TICRA) 

The mesh grid consists of two orthogonal sets of wires as illustrated in the 
figure below. The spacing between the wires is xs  and ys  in the dx - and 

dy -direction, respectively. The wire diameter is 0d  and the two sets of wires 
are in electrical contact at all the intersection points. 

    
   sy 

sx 
 

The reflection and transmission coefficients for the mesh grid are based on 
Astrakhan (1968). For incidence in one of the principal planes, for example 

0if = , the reflection coefficients are practically identical to those for the 
wire grid, i.e. R qq  is the same as for the wire grid with spacing xs  and simi-
larly for Rf f  in the orthogonal plane. 

One of the main purposes of the mesh grid is to model the electrical proper-
ties of the tricot mesh of unfurlable antennas. A real mesh is shown in the 
figure below. Although it is obvious that the pattern of the tricot mesh is far 
from being rectangular, it has been found (Pontoppidan, 1981) that it is pos-
sible to define an equivalent rectangular grid which, for any angle of inci-
dence and polarisation, gives the same reflected and transmitted field as the 
real mesh. 
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5.5 Advanced topics 

5.5.1 Combinations of FSS and arrays (TNO) 

As already anticipated in section 5.2.2.2, the Multimode Equivalent Network 
Approach is very suited for the analysis of multilayer FSS structures, but 
also for systems where the FSS panels are directly integrated on top of the 
array aperture [1]. In particular, the FSS can be used in combination with 
the array in order to: 

 improve the Radar Cross Section of the platform; 

 improve the frequency selectivity of the antenna, by properly “shaping” 
(enlarging or reducing) the array bandwidth. 

In the first case, it is not always sufficient to merely place the FSS in front of 
the array, but it must be properly shaped in order to get an effective reduc-
tion of the RCS. 

In the second case, the FSS can be used to increase the bandwidth of the ar-
ray, or create small stop-bands within the antenna bandwidth in order, for 
example, to reduce EMI problems in a complex platform environment con-
taining several antennas [2]. 

The tool developed by TNO allows the analysis of open-ended waveguide ar-
rays integrated with an arbitrary number of FSS panels. These latter may 
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consist of printed elements on dielectric substrates or perforated metal 
screens. Furthermore, the tool allows also the analysis of tuning or filtering 
elements and launchers inside the waveguide [3]. This gives the opportunity 
to design the array antenna as a whole (launcher, tuning or filtering ele-
ments in the waveguide, array apertures, FSSs), taking full advantage of the 
integrated structure and giving to the designer a number of different options 
and different degrees of freedom in the design process. 

The MEN formulation looks at the overall structure as a cascade of uniform 
blocks coupled through common transition regions. For each uniform region 
(in Fig.1, it is shown, as an example, a compact radiating waveguide element 
with coax launcher), the multimode equivalent network is easily derived 
adopting a modal description of the field and using transmission line formal-
ism.  

 

 
Figure 1  Example of decomposition of a complex structure (radiating 

waveguide element with coax launcher) into a cascade of uni-
form regions. The overall structure is studied with the MEN 
approach. 

The corresponding representation of the transition region is on the contrary 
derived solving the set of integral equations obtained by imposing the conti-
nuity condition of the electromagnetic field and resorting again to the modal 
description adopted for the two adjacent regions [4]. An example of such FSS 
integrated array antenna structure is shown in Fig.2. 

Fig. 3 shows the reflection coefficient of the FSS integrated array antenna of 
Fig.2, as a function of the frequency and for two different scanning angles. In 
the same picture, it is also shown a comparison with results obtained with 
the commercial software package HFSS [5]. The stop-band in the upper 
frequency band has been created in order to reduce the interference of an 
adjacent antenna system. The –10 dB useful bandwidth of the array between 
8.0 and 10.5 GHz has been preserved. 
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Figure 2  FSS integrated array antenna. The structure consists of the 

open-ended waveguide array and a multilayer FSS consisting 
of a core dielectric slab with printed FSS on both sides and 
two matching dielectric layers.  

 
Figure 3  Magnitude of the reflection coefficient of the complete FSS 

cascaded with the array as in Fig. 2. Comparison between the 
MEN full-wave simulation and the result obtained using 
HFSS for different incidence angles. 
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5.5.2 Curved surfaces 

5.5.2.1 TNO 

The type of structure that has been analyzed [1], [2] is reported in Fig. 1. It 
consists of an array of rectangular open-ended waveguides symmetrically 
developed all along an infinite metallic circular cylinder. Dielectric radomes 
and/or Frequency Selective Surfaces (FSS) can be placed in front of the 
apertures, in order to enhance some characteristics of the array, such as 
return loss and radiation pattern. The Unit Cell approach can be applied to 
such a structure under the hypothesis that all the apertures are placed 
symmetrically in both directions z and ϕ and are fed with the same 
amplitude, but with a progressive phase shift between two successive 
apertures. This assumption implies that radomes and/or FSS placed in front 
of the array must maintain the symmetry and the periodicity of the 
structure. Within each unit cell, as illustrated in a 3-d view in Fig. 2, we can 
identify the exciting rectangular waveguide, the radial phase shift wall 
waveguides (RPSWW), representing dielectric radomes or free space, and the 
metallic radial waveguides, representing the apertures in the FSS screens.  

Assuming this representation, the problem is reduced to the analysis of a 
cascade of transitions between adjacent waveguides.  

The electromagnetic field in the different regions is expanded in terms of ei-
genmodes. In general, in a radial waveguide, the electromagnetic field can-
not be represented in terms of transverse to ρ vector modes. 

The transverse field representation must consequently be effected on a sca-
lar basis as a superposition of TEz and TMz modes w.r.t. the z-axis.  

In the transverse directions ϕ  and z the RPSWW and the metallic radial 
waveguide have different modal functions. These can be derived by imposing 
the proper boundary conditions dictated by the periodicity of the array for 
the RPSWW and by the metallic walls for the radial waveguide. In the ra-
dial coordinate, on the contrary, they have the same behavior, which can be 
described in terms of Hankel functions. 

These functions (or the modified Bessel functions) represent forward and 
backward propagating (non-propagating) modes, respectively. A peculiarity 
of these waveguides is that forward waves “see” an enlarging radial 
waveguide, while the backward waves “see” a reducing radial waveguide. 
Hence, their characteristic impedances have different expressions and actu-
ally they are function of the radial coordinate. 
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Therefore, the same mode, at different sections of the radial waveguide, can 
be below cut-off (no propagation), or above cut-off (in propagation) passing 
through a transition region, the so-called gradual cut-off  region, where the 
modal characteristic impedance gradually goes from a predominantly reac-
tive to predominantly resistive behavior. 

Once the modal spectra of the different regions are derived, the overall 
structure is analyzed resorting to the MEN approach and therefore cascad-
ing the multimode impedance matrix representations of the different regions 
and corresponding junctions.  

A particular attention must be devoted to the transition between adjacent 
dielectric layers. In fact if this is trivial for the planar case, it is more com-
plicated for the special case of radial waveguides. In fact, TEz and TMz 
modes in radial coordinates, employed in the transverse representation of 
the RPSWW, are separable with respect to the z axis (the axis of the cylin-
der), but propagating in the radial direction. With ordinary TE and TM 
modes in the direction of propagation, the air-dielectric or dielectric-
dielectric interface would represent a simple junction between transmission 
lines, and the TE and TM modes would not be coupled together at the inter-
face. On the contrary, the TEz and TMz modes used in the RPSWW do couple 
at this interface. For the characterization of simple or multi-layer dielectric 
radomes, it can be used the equivalent circuit representation shown in Fig. 
3, [3], [4]. 

 
Figure1  Infinite array of open-ended waveguide radiators on a cylin-

drical surface loaded with dielectric layers and Frequency Se-
lective Surfaces (FSS). The cylinder axis lies along z-axis. 
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Figure 2  3-d view of the equivalent unit cell whose transverse-to-z sec-

tion is shown in Fig. 1. A rectangular waveguide radiates 
through a conducting cylinder of            radius R in the space 
and it is loaded with a cascade of Radial Phase Shift Wall 
Waveguide (RPSWW), filled with different dielectrics, and 
FSS 

 

 

 

 

 

 

 

 

 

Figure 3  Equivalent circuit representing the coupling between TEz and 
TMz modes at the interface between two RPSWW with differ-
ent dielectrics. TEz and TMz modes have the same combina-
tion of transverse indexes m and n 

Fig. 4 shows the scattering parameters relative to the structure of  Fig.2. 
The number of apertures (N) and the cylinder radius (R) are chosen in order 

RPSWW εr1 

TMz line 
RPSWW εr2 
TMz line

RPSWW εr1 
TEz line 

RPSWW εr2 
TEz line
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to maintain fixed the horizontal inter-element array ϕ∆r =24.247mm. This 
implies that: N=100 →R=0.386m, N=200 →  R=0.772m, N=500 →  
R=1.929m. S11 refers to the reflection coefficient ``seen" from the TE10 mode 
of the horizontal WR90 rectangular waveguide. S12 represents the transmis-
sion coefficient to the fundamental TM00 mode. S13 represents the transmis-
sion coefficient to the first higher mode TM01.  TM00 and TM01 are above cut-
off after the second FSS in the unit cell. TM01 mode is subject to the ``grad-
ual" cut-off condition.  

 
Figure 4  Scattering parameters relative to the structure shown in Fig. 

2. The number of apertures (N) and the cylinder radius (R) 
are chosen in order to maintain fixed the horizontal inter-
element array distance. S11 refers to the reflection coefficient 
``seen" from the TE10 mode of the horizontal WR90 rectangu-
lar waveguide. S12 represents the transmission coefficient to 
the fundamental TM00 mode. S13 represents the transmis-
sion coefficient to the first higher mode TM01. TM00 and 
TM01 are above cut-off after the second FSS in the unit cell. 
TM01 mode is subject to the ``gradual" cut-off condition. 
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5.5.2.2 Chalmers 

Curved periodic structures have been used in reflector systems and radomes. 
The analysis of periodic strips and patches inside multilayer circular-
cylindrical structures was performed by expanding the currents on the 
strips/patches in basis functions, and the amplitudes of the basis functions 
are determined numerically by the moment method (MoM) [1]. The electro-
magnetic field is in the form of Floquet modes due to the periodicity of the 
structure. It is sufficient to determine the current on one strip or patch, since 
the currents on the other strips are identical except for a phase difference. 
Similar type of analysis method was applied to spherical periodic structures 
[4]. 

If the source excites a full spectrum of plane or cylindrical waves, such as a 
dipole, the Floquet-mode expansion/MoM is a laborious process. A simpler 
approach is to use approximate boundary conditions. We have used two 
types of approximate boundary conditions for modelling the strips: the as-
ymptotic strip boundary conditions and the boundary conditions obtained by 
the homogenization method (Chapter 3.4 and [1]-[3]). When applying ho-
mogenization method we have used a locally planar approximation, i.e. we 
assume that the surface where the strips are located is locally a plane sur-
face. By this we can easily transform the boundary conditions from the rec-
tangular coordinate system to the cylindrical one. The curved corrugated 
surfaces have also been analysed using the asymptotic boundary conditions 
[5]. 

 

Figure 1  (a) cylindrical strip-loaded surface, (b) spherical periodical 
patch structure 

Eliminato: one can suppose

Eliminato: also 
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5.5.3 Edge effects due to finite size of reflector or radome 
   (Siena) 

5.5.3.1 Truncated periodicity  

The estimation of the reflection parameters in printed phased periodic sur-
faces is often based on the hypothesis of infinite structure; this allows the 
expansion of the fields in terms of Floquet waves (FW), thus reducing the 
analysis to that of a single cell of periodicity. As mentioned in Sec 5.2.1.3, 
the infinite surface approximation can be used to locally define equivalent 
currents to be used same way as Physical Optics. In this framework, the 
equivalent network introduced in section 5.2.1.1 can be adopted to synthe-
size the FSS behaviour with a moderate quantity of full-wave data. On the 
other hand, a rigorous analysis based on an element-by-element method of 
moments (MoM) becomes computationally prohibitive when the size of sur-
face increases.  An approximate while accurate alternative method consists 
of adding to the PO field an edge perturbation which may be rigorously es-
timated by solving via MoM an appropriate “fringe” integral equation [1], 
[2]. In this scheme, the perturbation field is expanded in terms of a few basis 
functions with domain on the entire surface aperture, which are derived by 
an efficient representation of the constituent locally tangent problem of 
semi-infinite periodic printed structure. Diffraction coefficients from this 
truncated periodicity problem can be obtained by superposing continuous 
equivalent FW source distribution extending over the semi-infinite array ap-
erture [3], [4]. The asymptotic treatment of each FW aperture distribution 
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leads to a spatially truncated version of the infinite array FW expansion, 
plus FW-induced diffracted contributions from the edges of the array. Both 
the truncated FW series and the series of the corresponding diffracted field 
contributions exhibit excellent convergence properties so that the resulting 
representation is found extremely convenient with respect to the direct 
summation over the spatial contributions from each element of the array. 
This approach has been applied successfully to various canonical configura-
tions, such as arrays of line sources in free-space [4] and on an infinite di-
electric slab [5], as well as slits on a truncated ground plane [6]. Recently, 
the method has been extended to free-space semi-infinite phased dipole ar-
rays [7], [8], and right-angle sectoral phased dipole arrays [9][10]. Invoking 
the localization principle of the diffraction phenomena at high frequency, 
these latter two canonical problems serve to construct the radiation from 
rectangular arrays as a superposition of edge and vertex FW-induced diffrac-
tion effects [11]. In [12], the three-dimensional (3-D) semi-infinite array 
treatment in terms of truncated FW is extended to an array of printed di-
poles on a grounded slab (Fig. 1). This work generalizes the (two-
dimensional) 2-D high-frequency solution presented in [5], to a 3-D case fol-
lowing the formulation used in [7], [8] for dipoles in free space. The rich va-
riety of associated phenomena are investigated in [13] and [14], especially as 
concerned with the LW/SW-FW interaction as affected by various slab and 
array parameters, and with the corresponding generalized GTD wave phys-
ics which describes those effects. This high-frequency AGF can be used in 
the framework of the MoM scheme as in [4] for the analysis of patch phased 
arrays, as well as to approximate directly the field radiated by the array in 
the near zone. 

 

 

 

 

 

 

Figure 1           Waves excited by Floquet waves at a finite array of elemen-
tary dipoles printed on a grounded dielectric slab: (a) spheri-
cal vertex-excited (space) diffracted wave, (b) conical edge-
excited (space) diffracted wave, (c) planar edge-excited surface 
wave, (d) cylindrical vertex-excited surface wave. 
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5.5.3.2 Truncated radomes 

The analysis of the alteration of the radiation of an antenna system due to 
radome covers is a well consolidated field. There are books [15] and many 
contributions in scientific journals covering this topic [16]-[17]. Due to the 
typically large dimensions of the radomes in terms of the wavelength, their 
full wave analysis is usually restricted to axisymmetric structures [18],[19]. 
In more general cases, the analysis often resorts to high frequency tech-
niques [20] such as Geometrical optics (GO), Geometrical Theory of Diffrac-
tion (GTD) or Physical Optics (PO). In particular PO [21],[22] is often se-
lected as a general purpose tool since it does not suffer from the problems 
associated the presence of caustics in generically curved structures. A good 
reference for the comparisons between the different techniques can be found 
in [23]. A good approximation of the diffraction coefficients in dielectric 
structures can be obtained by a generalization of Physical Optics, which is 
concerned with the use of the Green’s function of the stratified medium to 
estimate the equivalent current. This approach has been used in [24] and 
tested in [25] in comparison with full wave results. The “fringe integral 
equation” method presented in [26] has been proved as an efficient tool to 
test the accuracy of the diffraction coefficients derived from the above gener-
alized PO.   
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5.5.4 Surface material defects and                                          
           manufacturing tolerances (Lund) 

The manufacturing process always induces errors in the design. Often the 
errors are modelled by random variables, and assuming a Gaussian error 
distribution the results for reflector surfaces and array antennas in [1-2] are 
employed to estimate the effect of the errors. For a general probability dis-
tribution, some corresponding formulas are derived in [3]. 

Usually, the effect of random errors is to decrease the deterministic (zero er-
ror) power by a typical factor exp( (k ) )δ− 2 , where δ  is the standard devia-
tion of the errors in position. This decrease corresponds to the conversion of 
some deterministic power to a diffuse contribution proportional to the num-
ber of faulty elements. Often the errors are not Gaussian distributed, and for 
a general probability distribution the exponential factor is replaced by the 
Fourier transform, or characteristic function, of the probability distribution 
[3]. In the limit of small errors, there is no difference between different error 
distributions, unless the degrees of freedom are radically different between 
two distributions. 

Manufacturing tolerances on surfaces and antenna elements can be esti-
mated from analytical expressions as above, or by examining the sensitivity 
to perturbations in numerical simulations of the structure. In the latter case, 
it is important to have access to a code as general as possible, so that the 
code allows variation of the parameters needed to estimate the tolerances. 
When deciding on tolerance levels, it is important to have a clear under-
standing of the entire development chain of the antenna system, from the 
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numerical simulations guiding the design, to the final manufacturing proc-
ess and the environment in which the antenna is supposed to operate. 
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